
www.manaraa.com

www.manaraa.com

A Parallel Algorithm
Synthesis Procedure
for High-Performance
Computer Architectures

www.manaraa.com

SERIES IN COMPUTER SCIENCE
Series Editor: Rami G. Melhem

University of Pittsburgh
Pittsburgh, Pennsylvania

ENGINEERING ELECTRONIC NEGOTIATIONS
A Guide to Electronic Negotiation Technologies for the Design and
Implementation of Next-Generation Electronic Markets-Future
Silkroads of eCommerce
Michael Strobel

FUNDAMENTALS OF X PROGRAMMING
Graphical User Interfaces and Beyond
Theo Pavlidis

INTRODUCTION TO PARALLEL PROCESSING
Algorithms and Architectures
Behrooz Parhami

OBJECT-ORIENTED DISCRETE-EVENT SIMULATION WITH JAVA
A Practical Introduction
Jose M. Garrido

A PARALLEL ALGORITHM SYNTHESIS PROCEDURE FOR HIGH­
PERFORMANCE COMPUTER ARCHITECTURES
Ian N. Dunn and Gerard G. L. Meyer

PERFORMANCE MODELING OF OPERATING SYSTEMS USING
OBJECT-ORIENTED SIMULATION
A Practical Introduction
jose M. Garrido

POWER AWARE COMPUTING
Edited by Robert Graybill and Rami Melhem

THE STRUCTURAL THEORY OF PROBABILITY
New Ideas from Computer Science on the Ancient Problem of
Probabi I ity Interpretation
Paolo Rocchi

www.manaraa.com

A Parallel Algorithm
Synthesis Procedure
for High-Performance
Computer Architectures

Ian N. Dunn
Mercury Computer Systems, Inc.
Chelmsford, Massachusetts

and

Gerard G. L. Meyer
Johns Hopkins University
Baltimore, Maryland

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

www.manaraa.com

ISBN 978-1-4613-4658-6 ISBN 978-1-4419-8650-4 (eBook)
DOI 10.1007/978-1-4419-8650-4

©2003 Springer Science+Business Media New York
Originally published by Kluwer Academic / Plenum Publishers, New York in 2003
Softcover reprint of the hardcover 1 st edition 2003

http://www.wkap.nl

10 9 8 7 6 5 4 3 2 1

A c.i.P. record for this book is available from the Library of Congress

AII rights reserved

No part oi this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any meims, electronic, mechanical, photocopying, microfilming, recording, or otherwise,
without written permission from the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive
use by the purchaser of the work.

www.manaraa.com

Contents

List of Figures vii
List of Tables ix
Acknowledgments xi

1. INTRODUCTION 1

1 Notation and Conventions 2

2 Chapter Organization 3

2. PARALLEL COMPUTING 5
1 Architectures 6
2 Programming Models 9

3 Performance Metrics 10

3. PARALLEL ALGORITHM SYNTHESIS PROCEDURE 13

1 Architectural Model for Algorithm Synthesis 14

2 Synthesis Procedure 15

3 Related Work 25

4. REVIEW OF MATRIX FACTORIZATION 29

1 Givens-based Solution Procedures 31

2 Householder-based Solution Procedures 36

5. CASE STUDY 1: PARALLEL FAST GIVENS QR 41

1 Parallel Fast Givens Algorithm 42

2 Communication Procedures 51

3 Related Work 59

4 Experimental Results 60

v

www.manaraa.com

VI PARALLEL ALGORITHM SYNTHESIS PROCEDURE

6. CASE STUDY 2: PARALLEL COMPACT WY QR 75
1 Parallel Compact WY Algorithm 77
2 Related Work 83
3 Experimental Results 83

7. CASE STUDY 3: PARALLEL BIDIAGONALIZATION 89
1 Parallel Matrix Bidiagonalization Algorithm 90
2 Related Work 93
3 Experimental Results 95

8. CONCLUSION 101
References 103
Index 107

www.manaraa.com

List of Figures

2.1 A fat tree interconnection network 8
2.2 A hypercube interconnection network 9
2.3 Parallel latency C P and sequential latency C 11

2.4 Throughput time T,. 12
3.1 Architectural model for DSM architectures 14
3.2 Source and sink primitives for SH algorithm 16
3.3 Ordering scheme 1 for SH algorithm 20
3.4 Ordering scheme 2 for SH algorithm 21
3.5 Ordering scheme parameterized by p and 'If; for SH algorithm 22
3.6 Ordering scheme parameterized by h for SH algorithm 23
3.7 Ordering scheme parameterized by w 25
4.1 Source data for line fitting example 30
4.2 Line fit using QR factorization 31
4.3 Dependency graph for SFG 34
4.4 Ordering scheme for SFG algorithm 35
4.5 Dependency graph for SH algorithm 38
4.6 Ordering scheme for SH algorithm 39
5.1 PFG: Dependency graph parameterized by 'If; and p 42
5.2 PFG: Parameterized superscalar ordering 43

5.3 PFG: Two adjoining groups of rotations parameterized
by 'If; and p 44

5.4 PFG: Superscalar block and parameterization 45
5.5 PFG: Memory hierarchy parameterization 46
5.6 PFG: Synchronization and task indices 48
5.7 PFG: Execution times as a function of P on the HP 65

vii

www.manaraa.com

viii PARALLEL ALGORITHM SYNTHESIS PROCEDURE

5.8 PFO: Execution times as a function of P on the SOl 66
6.1 PCWY: Task dependency graph 77
6.2 PCWY: Partitioning and sequencing strategy 80
6.3 PCWY: Partitioning and sequencing strategy 81
7.1 PMB: Phase 1 zero ordering 94
7.2 PMB: Phase 2 zero ordering 95
7.3 PMB: Phase 2 rotation sequence 96
7.4 PMB: Execution times as a function of h on SOl Ori-

gin 2000 97
7.5 PMB: Execution times as a function of h on HP V2500 98
7.6 PMB: Execution times as a function of P on HP V2S00 99
7.7 PMB: Execution times as a function of P on SOl Ori-

gin 2000 99

www.manaraa.com

List of Tables

5.1 PFG: Minimum execution times on the HP 62

5.2 PFG: Optimal parameter setting on the HP 62

5.3 PFG: Minimum execution times on the SGI 63

5.4 PFG: Optimal parameter settings on the SGI 64

5.5 PFG: Sensitivity to parameter settings on the HP 66

5.6 PFG: Sensitivity to parameter settings on the SGI 67

5.7 PFG: Execution times as a function of P for m = 3000
and n = 1500 68

5.8 PFG: Execution times as a function of P for m = 1500
and n = 1500 69

5.9 PFG: Execution times as a function of P for m = 1500
and n = 500 70

5.10 PFG: Execution times as a function of P for m = 500
and n = 500 71

5.11 PFG: Execution times for various blends on the HP 72

5.12 PFG: Execution times for various blends on the IBM 72

5.13 PFG: Execution times for various blends on the SGI 73

6.1 PCWY: Execution times for h = h* and P = P* 84

6.2 PCWY: Experimentally determined optimal values of
hand P 85

6.3 PCWY: Execution times for h = 8 and P = P* 85

6.4 PCWY: Execution times for h = 12 and P = P* 86

6.5 PCWY: Execution times as a function P 86

ix

www.manaraa.com

Acknowledgments

This book grew out of research at the Parallel Computing and Imaging Lab­
oratory. Much of the material in this book builds upon research conducted
by students and members of the laboratory staff including Yosef Brandriss,
Dr. James Carrig, Dr. Mike Pascale, Thomas Steck, and Dakasorn Ubol. Dr.
Pascale introduced QR factorization and the critical role it plays in adaptive
beamforming (Meyer and Pascale, 1995). Dr. Carrig developed a strategy for
designing register and cache efficient linear algebra algorithms. His method­
ology led to the development of two new QR factorization algorithms (Carrig
and Meyer, 1997; Carrig and Meyer, 1999). We express our sincere ap­
preciation to Yosef Brandriss, Thomas Steck, and Dakasorn Ubol for their
invaluable assistance in the development of this material as well.

This book references the research of a number of luminaries in the field
of linear algebar including Christian Bischof, James Demmel, Jack Dongarra,
Kyle Gallivan, Gene Golub, Richard Hanson, William Kahan, Charles Law­
son, Robert Schreiber, and Charles Van Loan. Their work created a solid
mathematical foundation on which to develop the material in this book.

Finally, we thank our families for their constant encouragement and pa­
tience.

xi

www.manaraa.com

Chapter 1

INTRODUCTION

Parallel computing is the only viable, cost-effective approach to meeting
the timing constraints of many high performance signal processing applica­
tions. The computational and/or JJO requirements of a single application can
overwhelm the capabilities of a sequential computer. Applications in array
signal processing and image processing perform complex sequences of matrix
computations, have streaming data requirements in excess of one Gbits/s, and
must execute in 10 ms or less. The operating constraints of these applications
mandate the use of parallel computing.

Despite widespread predictions to the contrary, the pace of progress in
commercial, off-the-shelf processor technology has not slowed down. This
progress keeps the number of applications in the realm of parallel computing
relatively small and relegates parallel computing to the fringes of mainstream
computing. As a consequence, parallel algorithm designers lack standard soft­
ware tools for designing, debugging, and benchmarking parallel algorithms.
They must rely heavily upon intuition, a deep knowledge of the underlying
parallel architecture, vendor-specific optimizing compiler technologies, and
vendor-tuned kernel libraries for basic mathematical operations. In addition,
the limited success and short life of many parallel computers forces algorithm
designers to rapidly master new architectures and development environments.

While the vagaries of the commercial marketplace for parallel 'comput­
ers make for a challenging development environment, the real problem for
algorithm designers remains devising a program to distribute an algorithm
across multiple processors and share intermediate results to satisfy dependen­
cies among computations. Various programming models have been proposed
for distributing algorithms and managing shared data across multiple proces­
sors. Within the confines of these programming models, systematic techniques
for minimizing communication among processors, minimizing the number of

1

www.manaraa.com

2 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

times all processors must stop to synchronize, or maximizing the parallelism
in an algorithm abound. Unfortunately, the successive application of a hand­
ful of these techniques can produce parallel algorithms that run even slower
than their sequential counterparts.

To navigate this challenging environment, algorithm designers need a road
map, a detailed procedure that designers can use to efficiently develop high
performance, portable parallel algorithms. The focus of this book is to draw
such a road map. The Parallel Algorithm Synthesis Procedure can be used to
design reusable building blocks of adaptable, scalable software modules from
which high performance signal processing applications can be constructed.
The hallmark of the procedure is a semi-systematic process for introduc­
ing parameters to control the partitioning and scheduling of computation and
communication. This facilitates the tailoring of software modules to exploit
different configurations of multiple processors, multiple floating-point units,
and hierarchical memories. To showcase the efficacy of this new procedure,
Chapters 5, 6, and 7 describe in detail three new adjustable algorithms for
matrix factorization.

1. Notation and Conventions
Throughout this book, algorithms are defined using a stylized variant of

the MATLAB programming language similar to the one used by Golub and
Van Loan, 1989. The level of detail is designed to make translation to any
sequential higher-level language such as C, C++, or FORTRAN systematic.

All matrices are described using capital letters, and vectors are described
using lower case letters. Subscripts are used to describe elements of vectors
or matrices, and colon notation used in the subscript describes a range of
elements. For instance, AU :14,3 is used to describe a small column vector
with elements AU,3, A12,3. A13,3. and A14,3. Very little distinction is made
between mathematical notation and programming notation. The only impor­
tant difference is the addition of a superscript index to distinguish between
ditferent versions of the same scalar. vector, or matrix. For instance,

expresses a computation whereby the contents of the matrix A are replaced
by the contents of the product

To describe numerical procedures, the concept of an algorithm and a pro­
cedure is introduced. An algorithm has a clearly defined input/output rela­
tionship. A procedure. on the other hand, is a recipe for accomplishing a
task. While the procedure may also have some input/output relationships,

www.manaraa.com

Introduction 3

its primary role is to accomplish a task that cannot be strictly described by
its terminal output condition. To make this distinction clear, the following
examples of an algorithm and a procedure are provided.

Algorithm: Matrix-Vector Multiplication

Input(A, x)

[m, n] = dimensions(A)

For i = 1 to m

End For

Output(y)

Procedure: Message Passing

Step 1: If p is ODD and p = 0 then go to Step

Step 2: If p is EVEN and p = P then go to Step

Step 3: If p is ODD then send A to p - 1; else receive A from p + 1

Step 4: Stop.

For parallel algorithms, we define the following extensions:

DO FOR· LOOP IN PARALLEL - execute elements of the ensuing "for­
loop" in parallel

SEND - send a message to another processor

RECV - receive a message from another processor.

2. Chapter Organization
The remainder of this book is organized as follows. Chapter 2 introduces

some key aspects of parallel computing including architecture, parallel pro­
gramming environments, and performance metrics. Chapter 3 formalizes a
design methodology for parallel algorithms: the Parallel Algorithm Synthesis
Procedure. The synthesis procedure is applied to fast Givens QR factoriza­
tion, Compact WY QR factorization, and matrix bidiagonalization in Chapters
5, 6, and 7, respectively. Chapter 4 contains a review of standard Givens­
based and Householder-based factorization algorithms. Chapter 8 presents
final conclusions.

www.manaraa.com

Chapter 2

PARALLEL COMPUTING

Despite five decades of research, parallel computing remains an exotic,
frontier technology on the fringes of mainstream computing. Its much-heralded
triumph over sequential computing has yet to materialize. This is in spite of
the fact that the processing needs of many applications continue to eclipse the
capabilities of sequential computing.

The culprit is largely the software development environment. Fundamen­
tal shortcomings in the development environment of many parallel computer
architectures thwart the adoption of parallel computing. Foremost, parallel
computing has no unifying model to accurately predict the execution time of
algorithms on parallel architectures. Cost and scarce programming resources
prohibit deploying multiple algorithms and partitioning strategies in attempt
to find the fastest solution. As a consequence, algorithm design is largely an
intuitive art form dominated by practitioners who specialize in a particular
computer architecture. In addition, parallel computer architectures rarely last
more than a couple of years. Porting an algorithm to a new architecture often
requires extensive retuning, or in some cases a completely new implementa­
tion, to accommodate dissimilar programming environments, interconnection
networks, and processor technologies. The availability of a unifying model to
accurately predict execution time would address both these shortcomings by
promoting the development of standard software tools for designing, debug­
ging, and benchmarking parallel algorithms. This would greatly reduce the
effort involved in porting algorithms to new architectures. In the absence of
such a model, parallel algorithm designers must rely on intuition and hands-on
experience to manage a complex and challenging design environment.

To put the parallel algorithm design problem into perspective, this chapter
reviews some key aspects of parallel computer architecture, the two predom­
inant parallel programming models (shared memory and message passing),

5

www.manaraa.com

6 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

and various performance metrics that algorithm designers must employ in the
design and implementation of an algorithm.

1. Architectures
If a single processor can solve a problem in 10 seconds, can 10 processors

working in harmony solve the problem in one second? Since its inception,
the field of parallel computing has been struggling with this question. The
struggle has taken many architectural forms in the last four decades. Some
noteworthy architectures include:

1964 - Control Data Corporation CDC-6600

1966 - IBM 360/91

1969 - Control Data Corporation CDC-7600

1970 - MIT and DEC produce PDP-6/KAIO

1971 - Control Data Corporation Cyberplus

1972 - Goodyear STARAN, Burroughs PEPE

1974 - IBM 3838

1976 - Cray Research Cray-l, Control Data Corporation Flexible Proces­
sor, Floating Point Systems AP-120B

1981 - BBN Butterfly, DEC VAX-ll, Control Data Corporation Cyber
205, Floating Point Systems FPS-124

1982 - Cray Research Cray XlMP, Denelcor HEP, Control Data Corpora­
tion Advanced Flexible Processor

1983 - Fujitsu VP-200, Goodyear Aerospace MPP

1985 - IBM 3090, Intel iPSCll, NEC SX-2, NCube NCubel1O, Floating
Point Systems FPS-264, Convex Cl, Cray Research Cray-2

1986 - Thinking Machines Corporation CM-l

1988 - Silicon Graphics POWER Series, Cray Research YIMP, Intel iPSCl2,
Hitachi S-820, FPS 500 (1988)

1989 - Fujitsu VP2000, NCube NCubel2

1990 - MasPar MP-l, NEC SX-3, Fujitsu VP2600, Intel iPSC/860, Cray
Research C90

www.manaraa.com

Pamllel Computing 7

1991 - Kendall Square Research KSR-l, Think Machines Corporation
CM-200, Intel iWarp, Intel Paragon

1992 - MasPar MP-2, Thinking Machines Corporation CM-5

1993 - IBM PowerParallel, NEC Cenju-3.

The vast majority of the companies in this abridged timeline, which was
culled from Gregory Wilson's "The History of Parallel Computing" (Wilson,
1993), have since become extinct. In the seven years since this timeline was
compiled, the field of parallel computing has witnessed one of the most impor­
tant transitions in its history. It has progressed from being a field dominated
by supercomputing vendors to one where PC and workstation vendors such
as HP, mM, Intel, SOl, and Sun Microsystems now participate on a level
playing field with the few remaining supercomputing vendors. This transi­
tion ushered in the end of single-chassis parallel computing and marked the
advent of multi-chassis parallel computing or distributed/cluster computing
built around smaller, single-chassis parallel computers.

The driving force behind this transition has been a growing, robust market­
place for small-scale multiprocessors where several processors share a single
physical memory. Vendors employ superscalar processor technology and large
caches to reduce the demands on the shared memory bus while still achieving
high levels of performance. Superscalar processors are capable of performing
multiple scalar operations per clock cycle and are, in effect, mini parallel
computers. The caches complement the superscalar cores by providing fast
on-chip buffers to store commonly used data. The resulting shared mem­
ory mUltiprocessor is an extremely versatile and cost effective platform for
a variety of applications including computation-intensive database and server
operations.

To leverage this commercial, off-the-shelf parallel computing technology
for more demanding applications in science and engineering, multiple shared
memory mUltiprocessors are linked together through various interconnection
networks to build systems with hundreds, and in some cases, thousands of
processors. These systems are generally referred to as distributed shared
memory (DSM) multiprocessors (Judge et aI., 1999; Bell and van Ingen, 1999;
Protic et aI., 1996), and they dominate the marketplace for large- and small­
scale parallel computers.

Only a handful of parallel computer vendors continue to conduct research
in the areas of processor architecture and interconnection networks. In fact in
the area of processor architecture, the number of vendors is likely to narrow
even further when parallel computers based on the second generation IA-64
architecture become available. Interconnection network technology stills vary
widely by vendor. The advent of standard 2.5 Obaud serial transmission
technologies will narrow the spectrum of available interconnect technologies

www.manaraa.com

8 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

with Gigabit and 10 Gigabit Ethernet playing the dominant role. Vendors
have settled on a few popular network topologies including the fat tree (more
generally, multistage interconnection networks), the 1-0 torus (ring), the 2-
o grid, the 2-D mesh, and the hypercube. For example Figures 2.1 and 2.2
show the fat tree and the hypercube. The shaded nodes are in general adaptive
and can choose different routes to avoid blocking or collisions. The complex
and proprietary routing algorithms at the heart of these adaptive nodes make
developing models for these devices almost impossible. Network models
based on traditional topological structures are no longer accurate predictors
of performance.

6 7 9 10 II 12 13 14 " 16

Figure 2.1. A fat tree interconnection network for 16 shared memory mUltiprocessors. Each
shared memory mUltiprocessor is comprised of four processors.

In this book, numerical experiments are conducted on four distributed
shared memory architectures: a 64-processor HP SPP-2000, a 32-processor
HP V2500, a 32-processor IBM SP3, and a 128-processor SGI Origin 2000.
The HP SPP-2000 is comprised of four shared memory multiprocessors or
four hypernodes. Each hypernode contains 16 180 MHz PA-8000 superscalar
processors. The PA-8000 is capable of executing two multiply-accumulate
operations every clock cycle. Peak performance is 720 Mflops. Only a single
cache level is provided, and it can hold up to one MByte of data. Within
a hypernode, the interconnection fabric is built around a crossbar network
that links 16 processors to eight memory access controllers. Up to four hy­
pernodes are connected in multiple rings. The HP V2500 has a very similar
architecture to the SPP-2000. The main difference is that at the heart of the

www.manaraa.com

Parallel Computing 9

2

6

Figure 2.2. A hypercube interconnection network for 16 shared memory multiprocessors.
Each shared memory multiprocessor is comprised of four processors.

V2500 are 32 440 MHz PA-8500 superscalar processors. These processors
have a peak performance of 1760 Mflops. The IBM SP3 is comprised of
four shared memory multiprocessors or nodes. Each node contains eight 222
MHz Power3 processors. The Power3 has a peak performance of 888 Mflops.
Multiple nodes are connected using a multistage interconnection network sim­
ilar in structure to a fat tree. The level-l cache can store 64 KBytes of data,
and the level-2 has a four MByte unified instruction/data cache. The SOl
Origin 2000 is comprised of 128 300 MHz R12000 superscalar processors.
Each processor is capable of executing a multiply-accumulate operation every
clock cycle and can therefore deliver as much as 600 MFLOPS of perfor­
mance. The level-l cache can store 32KBytes of data. and the level-2 has
an eight MByte unified instruction/data cache. Two processors and a hub
controller comprise a node, and multiple nodes are connected in a hypercube.
The hub controller manages data traffic between nodes.

2. Programming Models
In large-scale systems, memory is almost always physically distributed.

The two predominant programming models for managing distributed, stored
program data are the shared memory model and the distributed memory model.
In the shared memory model. all stored data is globally accessible to all

www.manaraa.com

10 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

processors. The partitioning and scheduling of communication are transparent
to the algorithm designer. These functions are managed by the hardware
and system software as a function of the real-time data requirements of the
executing algorithm. In the distributed memory model, distributed data is
only accessible to the local processor. The algorithm designer is responsible
for explicitly transferring stored data among processors.

While the shared memory model provides for a much simpler programming
environment, algorithm designers have no control over how communications
are partitioned or when they are sent over the network. The executing pro­
gram triggers transfers implicitly via accesses to the memory hierarchy. The
partitioning of communication is a function of how the data is physically
stored in memory. As for distributed memory, the algorithm designer has
some degree of control over how and when messages are sent over the inter­
connection network. The amount of control depends on the functionality and
implementation of available message passing libraries.

To enhance portability in the two programming environments, two standard
shared memory and message passing libraries have been proposed: OpenMP
(Dagnum and Menon, 1998; OpenMP Architecture Review Board, 1999;
Throop, 1999) and the Message Passing Interface (MPI, Message Passing
Interface Forum, 1997). Both libraries are widely accepted and supported by
the majority of the vendors including IBM and SOl. In addition, there has
been some discussion of developing a unified standard library specification (
Bova et aI., 1999). This would allow algorithm designers to blend (hybrid
shared memory/message passing) the two programming environments in a sin­
gle executable without sacrificing portability. Currently, blending is possible
on some architectures, but the library settings and compiler flags necessary to
accomplish this are vendor specific. As a consequence, few researchers have
examined the performance benefits of this feature. To shed some light on the
potential benefits of such a feature, the case study in Chapter 5 investigates
the performance characteristics of a hybrid programming environment.

3. Performance Metrics

One consequence of not having a unifying model to accurately predict
the execution time of algorithms on parallel architectures is that algorithm
designers must rely on a patchwork of performance metrics to guide the design
process, to evaluate various algorithm-architecture pairs, and to gain some
insight as to how the performance of an algorithm-architecture pair may be
improved. Algorithm designers who rely on a single metric run the risk of
introducing unintended biases into their design process. This section explores
the advantages and disadvantages of some of the most common performance
metrics in parallel computing: latency, throughput, speedup, and efficiency.

www.manaraa.com

Parallel Computing 11

14 Cf-1
j I

r lj!io_.f) T T lVbo-::1)
! !

i
0
0

2 ••• I r:('Io-l) I ~~I) I • ••
0 · · · • 0 • • I 0 • • 0

• · • • • · I · · 0

II P TI"9-,..I) II T"r.q rl"lb-l l

••• I ~~ I • ••

Figure 2.3. Parallel latency cP and sequential latency C for the kth execution of an algo­
rithm.

Of the performance metrics discussed in this section, none should be used
independently of latency. It provides the most unbiased measurement for
comparing algorithm-architecture pairs. Throughput, speedup, and efficiency
matter insofar as they favor algorithm-architecture pairs with minimum latency
or provide some insight as to how the performance of an algorithm-architecture
pair may be improved.

Latency is defined as the elapsed time from initial data input to final data
output and is denoted by the symbol C. Parallel and sequential latency for
the kth execution of an algorithm is shown in Figure 2.3. Unfortunately
for parallel algorithms, latency measurements reveal nothing about the initial
distribution of the input data or final distribution of the output data. As a con­
sequence, algorithms can hide some of their communication costs by predis­
tributing the data and ignoring any costs associated with the final distribution
pattern of the output data. To remedy this situation, the real cost of redis­
tributing the input and output data from a fixed distribution scheme should
be included in the latency measurements. If possible, the scheme should be
representative of the data distribution requirements of a target application.

The throughput of a parallel algorithm T is the number of operations
computed per second, or the ratio of the number of arithmetic operations A

www.manaraa.com

12 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

of an algorithm to the its execution time T = max ({7k})]. Throughput for
the kth execution step is shown in Figure 2.4.

2

• • •
p

••• I T I I Tl{J--} I T~ri) I • ••
• • •

II T'~~I

Figure 2.{ Throughput time r,.

In some 110 bound algorithms throughput requirements can be far more
stringent than latency requirements. This is not true, however, of most em­
bedded algorithms, Throughput can be thought of as the rate at which infor­
mation must be handled, and latency can be thought of as the time allotted for
making a decision based on the available information. The quality of the de­
cision depends on the age of the information. Thus, the latency requirements
of an algorithm are usually as stringent as the requirements for throughput.

Another measure of an algorithm-architecture pair is speedup. Speedup
sP is defined as the ratio of single processor latency C to multiprocessor
latency if on P processors, that is C/ CP, generally bounded by 1 ::; sP ::;
P. A similar measure is the efficiency of an algorithm-architecture pair, or
normalized speedup, The efficiency using P processors £P is the ratio of the
speedup sP to the number of processors P that is £P = sP / P = C/(CP P).
Efficiency is bounded by 1/ P ::; £ P ::; 1.

A fundamental shortcoming of both speedup and efficiency as perfor­
mance metrics, however, is that they tend to favor inefficient compilation for
uniprocessor execution. To circumvent this problem, numerous authors have
defined extensions for speedup, including relative, asymptotic, relative asymp­
totic, and scaled speedup (Sahni and Thanvantri , 1996; Sun and Gustafson,
1991). The metric of choice in this research is latency also referred to as
execution time.

www.manaraa.com

Chapter 3

PARALLEL ALGORITHM SYNTHESIS
PROCEDURE

The Parallel Algorithm Synthesis Procedure introduces parameters to con­
trol the partitioning and scheduling of computation and communication. The
goal is to design and implement parameterized software components that can
be tailored to exploit multiple scalar units within a single processor, hier­
archical memories, and different configurations of multiple processors. At
the heart of the synthesis procedure is a computational model that provides
a qualitative framework for introducing parameters to improve reuse in the
register file and memory hierarchy, balancing the load among P processors,
and reducing data traffic over the processor interconnection network.

Given a numerical problem, application of the procedure begins with a
high-level language description of a candidate algorithm. In general, the
description contains both explicit and implicit information on the type and
number of computations and the order in which these computations are to be
executed. The explicit information comes from the structure of the solution
algorithm as it is described in the high-level language. The implicit informa­
tion is contained in language primitives for controlling program flow and in
library subroutines for performing computations. The challenge to algorithm
designers is to unravel both types of information while exploiting any potential
freedom to reorder the component computations for efficient execution. The
synthesis procedure guides the algorithm designer in tackling this challenging
problem. Chapters 5, 6, and 7 employ the Parallel Algorithm Synthesis Pro­
cedure in the design of three matrix factorization algorithms. In particular,
the case studies in Chapters 5 and 6 examine the problem of designing a
parallel algorithm for computing the QR factorization of a real m x n matrix.
The case study in Chapter 7 examines the problem of designing a parallel
algorithm for computing the bidiagonal factorization of a real m x n matrix.

13

www.manaraa.com

14 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

The case study chapters are ordered, from most comprehensive in Chapter 5
to least comprehensive in Chapter 7.

This chapter is organized as follows: before introducing the synthesis pro­
cedure, the underlying architectural model is discussed in Section 1; Section
2 introduces the Parallel Algorithm Synthesis Procedure; and in Section 3,
related work is discussed, including some recent developments in optimizing
compiler technology. For demonstration purposes, this chapter deploys the
standard Householder QR factorization (SH) algorithm. A complete descrip­
tion of the algorithm can be found on page 37.

1. Architectural Model for Algorithm Synthesis

Interconnection Network

Figure 3.1. Architectural model of a distributed memory machine built from multiple shared
memory multiprocessors

Figure 3.1 is a high-level depiction of the architectural model that underlies
the Parallel Algorithm Synthesis Procedure. The model is an abstraction of
a distributed shared memory machine built from multiple shared memory
multiprocessors and is representative of an increasingly popular class of high
performance computer architectures. These include the HP SPP-2000, HP
V2500, IBM SP3, and SOl Origin 2000.

The architecture consists of a network of Pm shared memory multiproces­
sors or nodes. A node is comprised of Ps superscalar processors. The total
number of processors is P = PmPs. A superscalar processor is comprised of
multiple memory elements arranged in hierarchical fashion (memory hierar­
chy), one or more scalar units for performing computations, and a network
interface controller. The highest level of the memory hierarchy is the register
file. The scalar units can use any combination of registers as source and desti­
nation operands for computation. Before computation can begin in the scalar
units, data must first be loaded into the register file from the level-l cache.

www.manaraa.com

Parallel Algorithm Synthesis Procedure 15

The caches have a line width of one word and are fully associative - any word
stored in the level-i cache or node memory can be mapped to any location
in the level-{i - 1) cache or the level-c cache for i = 1,2, ... , c - 1. Words
are expunged from the caches according to a least-recently-used replacement
policy. The network interface controllers transfer data between processors
and node memory. In the absence of resource conflicts, these transfers can be
executed in parallel with computational processing.

Although memory is physically distributed across the shared memory mul­
tiprocessors, algorithm designers can choose to manage the distributed, stored
data using a shared memory or message passing programming model. In the
shared memory model, all stored data is globally accessible to all processors.
The partitioning and scheduling of communication are transparent to the algo­
rithm designer because they are managed by the hardware and system software
as a function of the real-time data requirements of the executing algorithm. In
the distributed memory model, distributed data is only accessible to network
interface controllers and scalar units of the local processor. The algorithm
designer is responsible for the partitioning and scheduling of both computa­
tion and communication. The executing program explicitly manages the data
requirements of the algorithm. The network interface controller can manage
a single send-or-receive transaction from one of the neighboring processors.
The transaction can be executed simultaneously with computational process­
ing. In the case of the shared memory model, the network interface controller
determines whether a memory request is local or global, and fetches the ap­
propriate data for the requesting cache.

For simplicity, the interconnection network is assumed to be a linear ar­
ray. and each shared memory multiprocessor exchanges messages with its left
and right neighboring multiprocessors only. While few machines built today
employ linear array topologies, most static and dynamic interconnection net­
works can mimic the functionality of a linear array with minimal resource
conflicts. Thus. our choice does not restrict this work to any particular class
of interconnection topologies. Indeed, the machines under consideration in
this book can easily accommodate a linear array topology.

2. Synthesis Procedure
The first step in the synthesis procedure is to define the basic primitives.

which are the basic units of computation. The idea is to tailor the composition
of the basic primitives to exploit characteristics of superscalar microproces­
sors. These characteristics are defined as the ability to perform multiple scalar
or floating-point operations per clock cycle. This involves selecting the type,
mixture, and number of floating-point operations that comprise a basic prim­
itive. If possible, the mixture and type of floating-point operations should
resemble the mixture and type of scalar units found in the target processor.

www.manaraa.com

16 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

The total number of floating-point operations should be large enough to offset
any costs associated with executing the primitives on a single processor. A
candidate set of basic primitive definitions must meet the following condi­
tions: I) the definitions must be disjointed; 2) the union must encompass all
of the algorithm's component computations; and 3) each component compu­
tation must belong to one and only one basic primitive.

For a particular solution algorithm, there may be dozens of sets of candidate
basic primitive definitions. To narrow the choices, each set of candidate defin­
itions should be profiled on the target architecture, and the amount of available
parallelism for multiprocessor execution should be estimated. Unfortunately,
there is generally a tradeoff between sequential and parallel performance.
Superscalar processors are small parallel computers, and the severity of the
tradeoff is usually related to the number of scalar units. As a consequence,
careful attention must be paid to sequential performance because efficient su­
perscalar operation can typically reduce the number of processors by as much
as 50%.

2

3

4

5

6

7

8

9

10

II

12

2 3 4 5 6 7 8 9 10 11 12
j

Figure 3.2. Sink and source primitives for the SH algorithm.

www.manaraa.com

Parallel Algorithm Synthesis Procedure 17

To gauge the amount of available parallelism given a candidate set of
primitive definitions, the number of source concurrency sets and sink concur­
rency sets, and the cardinality of the largest source and sink concurrency sets
should be determined. This is accomplished by deriving a dependency graph
representation of the ordering constraints among the basic primitives. The
ordering constraints reflect underlying, value-based data dependencies among
basic primitives. Value-based data dependencies occur when one basic primi­
tive touches a value and then another basic primitive subsequently touches the
same value (Wolfe, 1996b). For deterministic algorithms, dependency graphs
have at least one source and one sink basic primitive. A source primitive
has no predecessor primitives. A sink primitive has no dependent primitives.
For example, the source and sink primitives are depicted in Figure 3.2 for
the dependency graph representation of the standard Householder algorithm.
Source and sink concurrency sets are groups of non-overlapping, independent
primitives. They are constructed iteratively using the following procedures:

Procedure: Source Concurrency Set Definition

Step 1: Let i = 1

Step 2: Let Ci be all source basic primitives

Step 3: Let Ci+1 be all primitives that are dependent on basic primitives Ci

Step 4: Let CHI be the largest group of basic primitives from CHI that
are independent

Step 5: If basic primitives have not been assigned to any Ck for 1 ::; k ::; i,
then let i = i + 1 and go to Step 3; else stop.

Procedure: Sink Concurrency Set Definition

Step 1: Let i = 1

Step 2: Let Ci be all sink basic primitives

Step 3: Let CHI be all primitives that are predecessor basic primitives to
Ci

Step 4: Let CHI be the largest group of basic primitives from G i+1 that
are independent

Step 5: If basic primitives have not been assigned to any Ck for 1 ::; k ::; i,
then let i = i + 1 and go to Step 3; else stop.

If the amount of parallelism among concurrency sets varies widely, then the
size of the concurrency sets in step 4 should be modified to mitigate inequal­
ities.

www.manaraa.com

18 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Within a source or sink concurrency set, the basic primitives are indepen­
dent. Thus, they can be executed concurrently. The total number of sink or
source concurrency sets provides the means for determining a rough estimate
of the latency or the minimum execution time in units of the basic primitives.
Sequential profiling data can be used to translate this estimate into execution
time. The cardinality of the largest source and sink concurrency sets aids
in estimating the number of processors needed to meet this estimate. This
information, coupled with the results of the profiling, can be used to eliminate
inefficient sets of basic primitive definitions.

Two basic primitives are defined in the following modified Gram-Schmidt
QR factorization algorithm:

Algorithm: Modified Gram-Schmidt QR Factorization

Input(A)

AD =A

[m, n] =dimensions(AD)

For k = 1 to n

Atk = norm(A~~,k) (Operation 1)

Ql:m,k = A~~,k/Atk (Operation 2)

For j = k + 1 to n

A~,j = QIm,kA~:m,j (Operation 3)

Atm,j = A~~,j - Ql:m,kA~,j (Operation 4)

End For

End For

Output(A, Q)

The "leading" basic primitive includes operations 1 and 2. The "subordi­
nate" basic primitive includes operations 3 and 4. With the basic primitives
defined, the ensuing sections help the algorithm designer introduce parameters
to control the partitioning and scheduling of computation and communication.

2.1 Superscalar Parameterization
The first layer of parameterization in the synthesis procedure focuses on

the problem of reducing data traffic between the memory hierarchy and the
scalar units. Parameters are introduced to control the amount of value-based

www.manaraa.com

Parallel Algorithm Synthesis Procedure 19

reuse in a group of basic primitives. Value-based reuse refers to the number
of times a value is used by the scalar units after it is loaded into a register
and before it is either stored in memory or overwritten. This type of reuse
is critical to attaining high levels of performance because the scalar units
can in general consume more values per clock cycle than can be loaded into
the register file per clock cycle. To improve reuse in the register file, the
parameter 'IjJ is introduced using the following:

Procedure: Superscalar parameterization

Step 1: Select a single source primitive and denote by the symbol 91

Step 2: Assume only the values needed to execute 91 are stored in the
register file

Step 3: Set i = 1

Step 4: Let Ei be the set of all primitives not in the set {91, 92, ... ,9d that
share a path of length 1, or share no path of any length with the set of
primitives {91, 92, ... , 9i}

Step 5: Let Gi be a subset of Ei where a primitive in Ei is also in Gi if
and only if all of its predecessor primitives that share a path length of 1
are in the set {91,92, ... ,9i}

Step 6: For each and every primitive in Gi, tabulate any additional data that
will have to be loaded into the register file or stored to the level-! cache
from the register file before the primitive can be executed

Step 7: Select the primitive from Gi that requires the largest number of
additionalloads/stores and denote it by the symbol 9i+l

Step 8: Let i = i + 1

Step 9: Repeat steps 4-8 'IjJ - 1 times

Step 10: Set k = i

Step 11: Assume the register file is large enough to store only the values
needed to execute {9k-.,p+b 9k-.,p+2,···, 9d

Step 12: Select the primitive from Gi that requires the smallest number of
additionalloads/stores and denote it by the symbol 9i+l

Step 13: Let i = i + 1

Step 14: Repeat steps 11-16 until the primitive 9i no longer reuses any of
the values already loaded into the register file

www.manaraa.com

20 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

2

3

4

5

6

7

8

9

JO

II

12

2 3 4 5 6 7 8 9 10 12
j

II

Figure 3.3. Ordering scheme I for the SH algorithm where 'If; = 3, m ~ n, and n = 12.

Step 15: Return to step 6 while Ei is non-empty

Multiple primitives may satisfy the selection conditions in steps 7 and 12.
As a consequence, a unique value of 'Ij; may produce multiple, dissimilar
ordering schemes. For example, the Superscalar Parameterization procedure
applied to the SH algorithm produces at least two ordering schemes, and
they are depicted in Figures 3.3 and 3.4. The algorithm designer should
profile candidate ordering schemes on the target architecture to ascertain the
merits of one scheme over another. If the basic primitives can be built from
machine-optimized subroutines, then the superscalar parameterization may
not be necessary. In particular, if the profiling step reveals that the basic
primitives achieve the desired levels of performance, then parameterization
can be skipped, and the algorithm designer should proceed directly to the
memory hierarchy parameterization.

The above procedure produces the best results if the algorithm designer
assumes that the register file is capable of storing enough data to execute r'lj;

www.manaraa.com

Parallel Algorithm Synthesis Procedure 21

primitives where r > 1. While this is generally not true, the effects of this
assumption on performance are negated by the next layer of parameterization.

2

3

4

5

6

7

8

9

10

II

12

2 3 4 5 6 7 8 9 10 II 12
j

Figure 3.{ Ordering scheme 2 for the SH algorithm where 'Ij! = 3, m ~ n, and n = 12.

To what extent the benefits of reuse are realized will depend on the com­
piler. Compilers rearrange computations to alleviate contention for registers
and manage data dependencies for peak scalar unit performance. So that this
rearranging can be applied efficiently, the procedure identifies small groups
of computations that can be optimized for efficient execution by the compiler.

The second superscalar parameter p targets the compiler. The goal of
the parameterization is to aggregate primitives into superscalar primitives.
The aggregation of primitives should complement the ordering parameterized
by 'IjJ and provide guidance to the compiler for instruction scheduling and
register allocation optimizations. The parameter p cuts the ordering scheme
parameterized by 'IjJ into segments. For example, the parameter p cuts the
ordering schemes for the SH algorithm into segments as depicted in Figure
3.5.

www.manaraa.com

22

4

5

6

7

8

9

10

11

12

PARALLEL ALGORITHM SYNTHESIS PROCEDURE

234 5 678
j

Figure 3.5. Ordering scheme parameterized by p and 1/J for the SH algorithm where p = 2,
1/J = 3, m ~ n, and n = 12.

For some high performance computer architectures, it may be necessary to
manually unravel the computations that comprise the superscalar primitives,
that is to hard code the register and compiler parameterizations (Andersson
et ai., 1998). If the compiler is not capable of unraveling the component
computations of the superscalar primitives, then the compiler will quickly run
out of registers before even a handful of primitives are executed.

Fortunately, optimal settings for the Superscalar Parameterization depend
solely on the size of the register file, the number of scalar units, and the
optimizing compiler - factors that are invariant to problem size.

2.2 Memory Hierarchy Parameterization
The second layer of parameterization focuses on reducing data traffic be­

tween node memory and the caches. Parameters are introduced to control
temporal reuse. Temporal reuse occurs when multiple accesses to a single
memory element occur close enough in time such that the element still resides

www.manaraa.com

Parallel Algorithm Synthesis Procedure 23

2

3

4

5

6

7

8

9

10

II

12

2 3 4 5 6 7 8 9 10 11 12
j

Figure 3.6. Ordering scheme parameterized by h for the SH algorithm where h = 2, P = 2,
'IjJ = 3, m 2: n, and n = 12.

in the caches. Temporal reuse is improved by introducing the cache parame­
ter h to control the ordering of the superscalar primitives using the following
procedure:

Procedure: Memory Hierarchy Parameterization

Step I: Select a single source superscalar primitive and denote it by the
symbol 81

Step 2: Assume only the values needed to execute 81 are stored in the cache

Step 3: Set i = 1

Step 4: Let lti be the set of all primitives not in the set {81' 82, ... , 8i} that
share a path of length 1, or share no path of any length with the set of
primitives {S1' S2,"" Si}

www.manaraa.com

24 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Step 5: Let Si be a subset of Vi where a primitive in Vi is also in Si, if and
only if all of its predecessor primitives that share a path length of 1 are in
the set {s1, s2, ... , si}

Step 6: For each and every primitive in Si, tabulate any additional data that
will have to be loaded into the cache before the primitive can be executed

Step 7: Select the primitive from Si that requires the largest number of
additional loads/stores and denote it by the symbol Si + 1

Step 8: Let i = i + 1

Step 9: Repeat steps 4-8 (h - 1) times where h is the cache parameter

Step 10: Set k = i

Step 11: Assume the cache is large enough to store only the values needed
to execute {Sk - h+ 1,Sk - h+2"",Sk}

Step 12: Select the primitive from Si that requires the smallest number of
additional loads/stores and denote it by the symbol Si+1

Step 13: Let i = i + 1

Step 14: Repeat steps 11-16 until the primitive Si no longer reuses any
stored values in the cache

Step 15: Return to step 6 while Vi is non-empty

For example, the Memory Hierarchy Parameterization procedure applied to
the SH algorithm produces the ordering in Figure 3.7.

The parameterizations introduced so far can be used in single processor
implementations. The resulting sequential, parameterized algorithm can be
used to probe the performance characteristics of a single superscalar processor.

2.3 Multiprocessor Parameterization
The final layer of parameterization focuses on the problem of partition­

ing the computational work to reduce load imbalance among the processing
elements. The multiprocessor parameter w aggregates superscalar primitives
into tasks. The aggregation of superscalar primitives should complement the
ordering parameterized by h. Much like the superscalar parameter p, the
parameter w cuts the ordering scheme parameterized by h, p, and 'IjJ into seg­
ments. For example, the Multiprocessor Parameterization applied to the SH
algorithm produces the partitioning scheme in Figure 3.7.

Tasks that can be computed concurrently comprise a concurrency set. Each
and every task must belong to one and only one concurrency set. The problem

www.manaraa.com

Parallel Algorithm Synthesis Procedure

2

3

4

5

6

7

8

9

10

II

12

~

2

,

~

3

F=:::. ;::::; I=::::

""""

'-
4 5 6

25

,..--.._._

h

;:= =:::- ~ F< .::= =
."

.,-

~

- r= R ::= ::::::::..

'-

7 8 9 10 11 12
j

Figure 3.7. Ordering scheme parameterized by w for the SH algorithm where w = 2, h = 2,
p = 2, "p = 3, m ~ n, and n = 12.

of assigning all tasks to multiple processors is reduced to only assigning tasks
within a single concurrency set to multiple processors, By computing the
total computational work within a concun'ency set, tasks can be assigned to
P processors in such a manner as to distribute the computational work as
evenly as possible. Tasks are non-preemptive - once initiated, a task executes
to completion.

Depending on the underlying dependencies among rotations, the composi­
tion of the concurrency sets may not be unique. If possible, final selection of
the concurrency sets should depend on profiling data.

3. Related Work
In the last couple of years, automatic techniques for exploiting various

aspects of parallel architectures have been the topic of much research (Darte
and Vivien, 1997; Lim and Lam, 1998; Sarkar, 1997; Smith and Suri, 2000;
Bodin and O'Boyle, 1996; Wolf and Lam, 1991; Wolfe, 1996b; Wolfe, 1996a).

www.manaraa.com

26 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Wolf and Lam, for instance, present an algorithm for handling combinations
of loop reversal, loop skewing, and loop interchange to improve parallelism.
The algorithm first detects all fully permutable loops - the loops can be
transformed such that there are no dependent cycles between iterations. It then
transforms a set of d fully permutable loops into one sequential inner loop and
d -1 outer loops with independent iterations or parallel loops. Unfortunately,
the optimality of this approach is limited to single-statement loop nests (Darte
and Vivien, 1997). In a more recent paper, Lim and Lam propose an algorithm
that minimizes the number of synchronizations for k degrees of parallelism
where k specifies the desired number of parallel loops. The idea is to choose
k such that a sufficient amount of parallelism can be found to fully occupy the
target architecture. Their technique encompasses the transformations of Wolf
and Lam and adds loop fusion, loop fission, and loop scaling, among others.
The success of the approach hinges on the assumption that the amount of data
communication between processors is directly proportional to the number of
synchronizations. Hence, by minimizing the number of synchronizations, they
hope to minimize data communication and in turn minimize execution time.

Darte and Vivien have developed a technique for maximizing the number of
loops with independent iterations in a nested set of loops. The number of loops
generated by their approach is a function of how complex the dependencies
are among computations. Darte and Vivien use an inexact representation of
the dependencies among computations and cannot take full advantage of the
freedom that may exist to reorder computations for efficient parallel execution.
As the experimental results show in Chapter 5, neither the approach of Darte
and Vivien nor the approach of Lim and Lam necessarily results in the best
execution time.

Much of Lam and her students' work has been incorporated into the Stan­
ford U ni versity Intermediate Format (SUIF) compiler (Wilson et al., 1994).
SUIF is a powerful research platform for evaluating new developments in the
optimizing compiler community. Algorithm designers to gain insight into how
dependencies among computations can be manipulated to expose parallelism
can also use the compiler.

While a compiler optimization may decrease the number of synchroniza­
tions or increase the amount of exploitable parallelism, it may also degrade
the performance of the memory system or stall the instruction pipelines. The
successive application of a handful of compiler optimizations can produce
multiprocessor programs that run even slower than their sequential counter­
parts. The order in which the optimizations are applied is also very impor­
tant. High-level optimizations for exposing multiprocessor parallelism may
adversely affect sequential performance. The severity of the impact is propor­
tional to the number of scalar units. As a consequence, low level optimiza­
tions, including inner-loop unrolling, and instruction scheduling should be

www.manaraa.com

Parallel Algorithm Synthesis Procedure 27

done before high-level optimizations are applied. This is problematic because
low level optimizations are typically applied to assembly code, and high­
level optimizations are typically applied to high-level language code. The
Parallel Algorithm Synthesis Procedure follows the philosophy of first apply­
ing low level optimizations (superscalar parameterization) and then applying
high-level optimizations (memory hierarchy and multiprocessor parameteriza­
tions). The case studies in Chapters 5, 6, and 7 showcase the efficacy of this
philosophy.

Besides automatic techniques for exploiting parallel computer architectures,
various authors have proposed synthesis procedures for addressing a particular
aspect of parallel algorithm design. Stankovic et al. (1995) review classical
scheduling results for the multiprocessor task assignment problem. While the
results do not provide direct solutions, the authors advocate using the results
to gain some insight in how to avoid poor scheduling algorithm choices. Gal­
livan et al. (1988) propose an analysis strategy for quantifying the benefits
of blocking. The authors apply their analysis strategy to matrix-matrix mul­
tiplication kernels in the level-3 library of the basic linear algebra subroutine
library (BLAS, Lawson et al., 1979; Dongarra et al., 1990). Robert (1990)
reviews various algorithm design procedures in the context of LU decompo­
sition.

Many of the techniques employed by the proposed synthesis procedure
to partition and schedule computations and communications are closely re­
lated to compiler optimizations and algorithm synthesis strategies developed
previously by other researchers. The superscalar and memory hierarchy para­
meterizations are for instance very closely related to a graph blocking scheme
known as "tiling" (Desprez et aI., 1998; Wolfe, 1996b). What differenti­
ates the Parallel Algorithm Synthesis Procedure from other available com­
piler optimizations and synthesis procedures is the explicit use of parameters
to control the optimizations and the order in which the parameters are intro­
duced. The parameters permit the algorithm designer to explore the tradeoff
between maximizing coarse-grain parallelism, maximizing fine-grain paral­
lelism, minimizing communication, and minimizing the number of synchro­
nizations. Optimizing compilers solve these interdependent problems sequen­
tially and separately. The above tradeoff is extremely sensitive to factors that
are not available at compile time, such as the dimensionality of the problem.
It is difficult to select an appropriate strategy without some sort of bound on
m and n. Interactive compilers that pole the algorithm designer for boundary
information on some runtime parameters would be very useful in addressing
this problem.

www.manaraa.com

Chapter 4

REVIEW OF MATRIX FACTORIZATION

Matrix factorization algorithms lie at the heart of many signal processing
applications. For example, the problem of finding a vector x, such that Ax =
b, where A is an m x n complex matrix and b is a complex n-Iength vector,
is a particularly important and computationally intensive problem in adaptive
beamforming applications. When m ~ n, the problem is overdetermined -
there are more equations than unknowns. In general, overdetermined systems
have no exact solution, but a suitable approximation is to find a vector x that
minimizes the total squared error or solves the least squares problem:

min IIAx - bl12
xEC

If A has full column rank, then there is a unique vector x that minimizes the
least squares problem and solves the linear system AH Ax = AHb (Golub and
Van Loan, 1989).

Computing the matrix factorization A = Q R is the most reliable and
efficient procedure for determining the least squares solution of an overde­
termined system of linear equations. Rather than finding a vector x that
minimizes IIAx - bl1 2 , QR factorization can be used to find a vector y that
solves the equation Ry = g, where the matrix R = QH A is upper triangular,
c = QHb, and QH Q = I. Because of the special properties of the matrix Q,
the vector y that solves the equation Ry = c is also the vector that minimizes

Given the matrix R and the vector c, backward substitution can exploit the
upper triangular structure of R to solve the equation Ry = c directly.

An example of a least squares problem is fitting a straight line to an exper­
imentally determined set of data points. For example, consider the problem

29

www.manaraa.com

30

60

50

40

30

20

10 •• • •
0

0

PARALLEL ALGORITHM SYNTHESIS PROCEDURE

..
• •

• •
• ••

• • ••
•• • • ••••••• • •

10

• • •• • •
•

20 30 40 50

Figure 4.1. Source data for line fitting example.

60

of fitting a line to the data points (aI, bl)' (a2' b2), ... , (a50, b50) in Figure
4.1. Clearly, there are no unique values of Xl and X2 that satisfy all of the
linear equations bl = Xl + a1X2, b2 = Xl + a2X2, .•. , b50 = Xl + a50x2. As
a consequence, a suitable fit can be found by solving the corresponding least
squares problem:

min IIAx - bl1 2
xE'R

where

A=[~ :~l&b=[~~l'
~ a~o b~o

By computing the QR factorization of A and applying the transformation Q
to b, the solution is straightforward for the line-fitting example:

R = [Tri' ~:::] & c = [~:].

o 0 C50

The resulting solution is depicted in Figure 4.2 for Xl = 4.55 and X2 = 0.79.
While the problem of fitting a line to a data sequence is a convenient example,
the special Vandermonde structure of A allows for a much simpler solution
procedure that does not include QR factorization (Golub and Van Loan, 1989).

There are a number of well-known algorithms for computing the QR factor­
ization of a matrix including Givens, Householder, and Gram-Schmidt meth­
ods. In this chapter, two Givens-based algorithms, two Householder-based

www.manaraa.com

Review of M atfix Factorization

60 ~----------------------------------

50

40

30

20

10

• •

31

o +-----~-------r------,-----_.------,_----~

o 10 20 30 40 50 60

Figure 4.2. Resulting line fit using QR factorization .

algorithms, and a Householder-based matrix bidiagonalization algorithm are
discussed. The algorithms take as input complex data. However for program­
matic simplicity, the case studies in Chapters 5, 6, and 7 are based on real
versions of the algorithms presented in this chapter.

1. Givens-based Solution Procedures
Givens rotations can be used to selectively zero elements of a matrix. In

this section, two types of Givens rotations are discussed: standard and fast.

1.1 Standard Givens QR Factorization
A Givens rotation is an orthogonal reflection in C2 x 2 and has the form

G(i , k,j) = [c(i: k,j! *
- s(1,k ,J)

s(i, k,j)]
c(i, k,j) . (4.1)

If

Xk,j Xk,j+l

X =
x' ,

~,J Xi..i + l

X k ,j =/: 0,
and

r(i,k,j) = VIXk,jI2 + IXi,j12 (4.2)

www.manaraa.com

32 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

c(i, k, j)

s(i, k,j)

IXk,jl
r(i, k,j)
-c(i, k,j) xi,j

* Xk,j

(4.3)

(4.4)

then

[G(i, i-I, j)H Xi - l :i ,j:j+1], 1."
t- .t,J

= [Xi-1,i-1 r(i,i -ol,j)/lxi-l,i-11],

[G(i i-I J.)H X '"] , , t-1:t,J:)+1 , I" I
t- :2,)+

_ [C(i,i-l,j)Xi-l,j+l-S(i,i-l,j)Xi,j+1]
- s(i,i -1,j)* Xi-I,HI + c(i,i -1,j) Xi,j+1 '

and

G(i,i -1,j)HG(i,i -I,j)

[c(i, i - l,j)2 + c(i, i - I,j)2IXi,jI2/IXi-l,jI2 0]
o c(i, i - I,j)2 + c(i, i - l,j)2Ixi.i12/IXi_l,jI2

[~ ~].
The Standard Givens (SG) QR factorization algorithm applies a sequence

of Givens rotations to annihilate the subdiagonal elements of a complex m x n.

Algorithm: SG (Standard Givens QR Factorization)

Input(A)

AO =A

[m, n] = dimensions(AO)

k=O

For j = 1 to min(m - l,n)

For i = m to j + 1 by -1

If Atl,j =1= 0 then use Eqs. 4.2 - 4.4 to compute G(i,i -I,j)

A k +1 G(" 1 .)HAk 'i-I:i,j:n = Z,2 - ,J i-I:i,j:n
k=k+l

End If

www.manaraa.com

Review of Matrix Factorization

End For

End For

A=Ak

Output(A)

33

The annihilation proceeds from bottom to top within each column and then
from left to right, column-by-column. Explicit computation of the matrix Q is
not often necessary in signal processing applications where QR is performed.
As a consequence, high-level descriptions of many QR factorization algo­
rithms do not include the steps necessary to determine Q, and this includes
the algorithms presented in this chapter.

1.2 Fast Givens QR Factorization
Standard Givens rotations are inefficient on computer architectures capable

of performing one or more multiply-accumulates per clock cycle. At the heart
of a Givens rotation are four multiplications and two additions. Fast Givens
rotation is comprised of two multiplications and two additions. While fast
Givens rotations are not orthogonal, they can be used to solve least squares
problems.

The Standard Fast Givens (SFG) QR factorization algorithm applies a se­
quence of fast Givens rotations to reduce a real m x n matrix A to upper
triangular. The rotations have the following forms:

for a "type I" rotation and

for a "type 2" rotation.
If

x =

[/31(i, k,j)* 1]
1 Ql(i, k,j)*

X' . t,]

Xi,j =I 0,

www.manaraa.com

34

and

then

2

3

4

5

6

7

8

9

10

11

12

13

PARALLEL ALGORITHM SYNTHESIS PROCEDURE

2 3 4 5 6 7 8 9 10 }

Figure 4.3. Dependency graph for the case m = 13 and n = 10.

a1(i, k,j)
(31(i, k,j)

'i'l(i , k,j)

Xk,j '# 0,

-xi,j Xk ,j / IXi,j 12
= -a1(i, k,j)* Di,i / Dk,k

real(-a1 (i, k, j) (31 (i, k, j)),

(4.5)

(4.6)
(4.7)

a2(i, k,j) = -x'k,j Xi ,j / IXk,j12 (4.8)

f32(i, k,j) = -a2(i, k,j)* Dk,k / Di,i (4.9)

'i'2(i , k,j) = real(-a2(i, k,j) f32(i, k,j)) (4.10)

H(i , i - 1,j)H Xi-1 :i ,j :j+l

= [(31(i,i-l,j~Xi-1 ,j+Xi,j (31(i, i - I,j) X.i - .l,j+l -: Xi,j+l]

Xi - l,j+l + al(z, Z - I,J) Xi,j+l

www.manaraa.com

Review of Matrix Factorization

2

3

4

5

6

7

8

9

10

II

12

I3

2 3 4 5 6 7 8 9 IO }

Figure 4-4. SFG ordering for the case m = 13 and n = 10.

for a "type 1" fast Givens rotation and

F2 (i,i -1,j)HXi _ 1:i ,j:j+1

= [Xi-l,j+.82(~i-1,j)Xi,j Xi-~,j.+1 + ~2(i, i - 1,j) xi,HI]

(Y2(Z, Z - 1,J) Xi-I,HI + Xi,j+l

35

for a "type 2" fast Givens rotation. The appropriate type of rotation is chosen
to minimize the growth in the entries of D and X. The algorithm is presented
below:

Algorithm: SFG (Standard Fast Givens QR Factorization)

Input(A)

AO=A

[m, n] = dimensions(AO)

k=O

www.manaraa.com

36 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

For j = 1 to min(m - 1, n)

For i = m to j + 1 by -1

If Af,j =I 0 and ALl,j =I 0 then use Eqs. 4.5 - 4.10 to compute
parameters 01, 02, f3l, f32, /'1. and /'2

If/'l(i,i-l,k) < 1 thenA~!l:i,j:n = F1(i,i-l,j)HALl:i,j:n
and Dk+l = /'l(i,i -1,j)Dk
El Ak+l - F (.. 1 ·)HAk dDk+1- (.. se i-l:i,j:n - 2 2,2- ,J i-l:i,j:n an - /'2 2, z-
1 ·)Dk ,]

k=k+l
End If

End For

End For

A=Ak

Output(A).

Let ri,j denote the application of a rotation to introduce a zero in row i of
column j by combining rows i and i - 1. Figure 4.4 shows the SFG rotation
ordering in the case m = 13 and n = 10 where each shaded circle represents
r i,j. No element of the matrix A is annihilated more than once, and since
row i was last modified in rHl,j and row i -1 was last modified in ri-l,j-l,
ri,j depends on rHl,j and ri-l,j-l. From these dependency relationships, a
dependency graph is derived as depicted in Figure 4.3 for the case m = 13
and n = 10. Any path through the graph that does not violate the depen­
dencies and traverses each rotation once and only once will possess the same
numerical properties as the SFG algorithm. These dependency relationships
and the corresponding dependency graph can also be used to describe the SG
algorithm.

2. Householder-based Solution Procedures
Central to the Householder-based solution procedures are Householder re­

flections. Ifw E Cmx1 , wHw > 0, and T = -2/(wHw), then a Householder
reflection is defined as a matrix H = I + TWW H. A Householder reflection
can selectively zero elements of a vector. This capacity, in conjunction with
the fact that a Householder reflection is orthogonal,

HH H = (I + TwwH)H (I + TwwH)

H 4 4 H H
I -4ww ~ + (H FW(w w)w

W W W W

= I

www.manaraa.com

Review of Matrix Factorization 37

is what makes Householder reflections particularly useful in solving least
squares problems.

2.1 Householder QR Factorization
The standard Householder QR factorization (SH) algorithm applies a se­

quence of min(m - 1, n) Householder reflections to reduce a complex m x n
matrix A to upper triangular form. The reduction proceeds one column at a
time from left-to-right using the following algorithm:

Algorithm: SH (Standard Householder QR Factorization)

[m, n] = dimensions(AO)

For k = 1 to min(m -l,n)

/3 = -sign(real(AZ~1))IIAZ~,kI12

a = l/(A~I/ - !3) ,

Tk = (/3 - A~-,/)/ /3 ,

v~ = 1

k _ Ak-1 / v2:m -k+l - k+l:m a

A k (I k * k k Il)HAk-l
k:m,k:n = - T V V k:m,k:n

End For

Output(A).

The computation of a, /3, T i , and wi is denoted by the symbol Ii and the
computations necessary to apply the Hi to the jth column of Ai-l by the
symbol Si,j. For the SH algorithm, Si,j depends on Si-l,j and on Ii. In turn,
li depends on Si-l,i. Figure 4.5 shows the corresponding dependency graph
for the case m ~ nand n = 12 where a circle represents Ii and a square
represents Si,j for j = 1,2, ... , i and i = 1,2, ... , min(m - 1, n). Figure
4.6 shows the SH algorithm ordering through the graph.

www.manaraa.com

38 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

2

3

4

5

6

7

8

9

10

II

12

2 3 4 5 6 7 8 9 10 II 12

Figure 4.5. SH dependency graph for the case m ~ nand n = 12.

2.2 Compact WY: Block QR Factorization

j

Bischof and Van Loan (1987) proposed a means of aggregating q House­
holder reflections. They showed that the product Q = HIH2 ... Hq can
be written in the form I + WY (the so-called "WY" representation) where
W E Cm x q and Y E Cqxm. Aggregation allows for the reflections to be
applied in block fashion using matrix-matrix multiplication. Schreiber and
Van Loan (1989) proposed a more efficient representation for the product

Q=I+YTyH

or the Compact WY presentation where Y E Cmxq and T E Chxq. Given Vi

for i = 1,2, .. . ,q, the following procedure computes Y and T:

Algorithm: CWY (Compact WY)

Input(m, 7'1 , 7'2 , . .. , 7'q, VI , v2 , ... , vq)

for i = 1 to q

www.manaraa.com

Review of Matrix Factorization

2

3

4

5

6

7

8

9

10

11

12

2 3 4 5 6 7 8 9 10 11 12

Figure 4.6. SH ordering for the case m 2:: nand n = 12.

Y1 :m,i = vi

i H i
Tl:i - l ,i = -7 Tl:i-l,l :i- l Ji'm !-i-I V . ,.

End For

T=Tq

T=Tq

Output(T, Y)

39

j

If h « m, then the added computational cost associated with the Compact
WY representation is negligible in comparison to the potential performance
benefits of introducing matrix-matrix multiplication. The problem of comput­
ing the QR factorization of a matrix using the Compact WY representation is
now straightforward:

www.manaraa.com

40 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Algorithm: SCWY (Standard Compact WY QR Factorization)

Input(A, q)

AO=A

[m, n] = dimensions(Ao)

mn = min(m - 1, n)

For k = 1 to mn by q

n = min(k + 2q - 1, m n)

Compute [Vk' Vk+l,"" Vii] using the SH algorithm to factor A~~,k:ii
Compute Y and T using the CWY algorithm

A~;::,k+q:n = A~:m,k+q:n + YTHyH A~:m,k+q:n
End For

A = Ak+q

Output(A)

2.3 Householder Bidiagonal Factorization
The Standard Householder Bidiagonal Factorization algorithm (SHB, Golub

and Kahan, 1965) algorithm applies an alternating sequence of left and right
Householder reflections to reduce A to the bidiagonal matrix B. More pre­
cisely, beginning with BO = A,

(4.11)

and
Bk+l = Bk+l (I - ak*vkHvk) (4.12)

are computed for k = 1, ... ,mn where mn = min(m - 1, n). In Eq. (4.11),
the scalar Tk and the m-element Householder column vector uk are determined
such that the kth column of Bk+ 1 * is zero below the diagonal using the
SH algorithm. Similarly, in Eq. (4.l2) the scalar ak and the n-element
Householder row vector vk are determined such that the kth row of Bk+ 1 is
zero to the right of the superdiagonal using a row-oriented version of the SH
algorithm. By taking advantage of the zeros in uk and vk and distributing
the multiplications in Eqs. (4.11) and (4.12), the SBH algorithm may be
implemented using 4n2 (m - n/3) flops.

www.manaraa.com

Chapter 5

CASE STUDY 1: PARALLEL FAST GIVENS
QR FACTORIZATION

Although parallel QR factorization has been the topic of much research,
available parallel algorithms exhibit poor scalability characteristics on matri­
ces with dimensions less than 3000. As a consequence, there is little flex­
ibility to meet stringent latency constraints by manipulating the number of
processors. This is particularly true of parallel algorithms based on block
cyclic distribution schemes such as ScaLAPACK's PDGEQRF (Choi et aI.,
1995; Blackford et aI., 1997). Further compounding the problem of scalability
is the fact that block cyclic distribution schemes are often not compatible with
the data movement patterns of many applications. Note that some very recent
work on efficient real time redistribution techniques promises to make these
algorithms more attractive to high performance signal processing applications
(Park et aI., 1999; Petit and Dongarra, 1999).

This chapter discusses the design, implementation, and performance of a
parameterized, parallel fast Givens algorithm (Dunn and Meyer, 2002) for
computing the factorization A = Q R. This algorithm is well suited to sig­
nal processing applications and applies fast Givens rotations in block fashion
using a strategy that is similar to the one developed by Carrig and Meyer
(1999) for sequential QR factorization. Using the Parallel Algorithm Synthe­
sis Procedure, superscalar, memory hierarchy, and multiprocessor parameters
are introduced.

Despite the wealth of research on parallel algorithms, there is little consen­
sus on which of the parallel programming environments - shared memory or
message passing - consistently delivers singular levels of performance across a
variety of problem dimensions and parallel computer architectures. The paral­
lel fast Givens algorithm is implemented in shared memory, message passing,
or hybrid shared memory/message passing. The hybrid environment allows
interpolation between the shared memory and message passing progranuning

41

www.manaraa.com

42 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

;~l ~
• • • • • •

• •
~-

• •

.. :~ •••••
i

j)+1 j+p - I

;- 'I'+p

i+/J-2

i+p -J

Figure 5.1. Dependency graph for a group of rotations parameterized by superscalar para­
meters 1j; and p.

environments. Numerical experiments for a shared memory version and two
message passing versions are conducted on a 64-processor HP SPP-2000 and
a 128-processor SOl Origin 2000. For the hybrid version, a 32-processor
IBM SP3 is added.

1. The Parallel Fast Givens Algorithm
This section presents the Parameterized Parallel Fast Givens (PFG) algo­

rithm. The algorithm can be manipulated to accommodate the performance
characteristics of various parallel architectures. The Parallel Algorithm Syn­
thesis Procedure guides the introduction of the parameters.

1.1 Superscalar Parameterization
In the SFG algorithm presented in Chapter 4, the application of rotations

in Figure 5.1 can require as many as 4'ljJpn distinct register load and store
operations for 'ljJ + 1 < i < m - p + I, 1 :S 'ljJ « m, 1 :S p « n, and
1 :S j « n - p + 1. The superscalar parameterization procedure is applied to
these rotations to develop a register efficient ordering. The results are shown
in Figure 5.2. Steps 1 through 9 produce the vertical ordering of the rotations,

www.manaraa.com

Parallel Fast Givens QR Factorization

i -III+ }--.-..... _

: 1\
;-1

1
~~:J. ; \. <b cp

i + 1·········-l·· ••

I ~::::::
I I
j j+} j~ - l

i-III +P

i~-2

i~-1

Figure 5.2. Parameterized superscalar ordering of the rotations.

43

and steps 10 through 15 produces the gross diagonal ordering of groups of
rotations. Grouping rotations does not guarantee a register efficient ordering.
However, by interleaving the computations associated with the ordering, the
elements of the matrix in rows i - 'l/J, i - 'l/J + 1, . .. ,i + p - 1 of column k
can be loaded into registers once and multiple rotations can be applied for
k = j + p, j + P + 1, .. . ,n requiring approximately 2('l/J + p)n register loads
and stores. This interleaving is accomplished by dividing the computations
into two groups. The first group is comprised of only those computations
necessary to determine the rotation coefficients

where ti E {1,2} for i = 1,2, .. . , 'l/Jp describes whether the rotation is of
type 1 or type 2. The rotation coefficients are computed in the order in
which they are enumerated, and this corresponds to the superscalar ordering
shown in Figure 5.2. The total number of computations for this group is
approximately 'l/Jp(2p + 18). The second group is comprised of roughly the
remaining 4'l/Jpn computations. These computations are involved in applying
the rotation coefficients to columns j + p - 1, j + p, ... 1 n of the matrix A.
By applying the coefficients one after another to matrix elements stored in

www.manaraa.com

44 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

i-21f1+1

i-IfI-J·········

i -IfI···

i-IfI+ J·········

j j+J j+p - J

i-IfI+P -2

i-IfI+P -J

i-IfI+P

i+p -2

i+p -J

Figure 5.3. Two adjoining groups of rotations parameterized by the superscaJar parameters
1/1 and p.

the register bank, the number of register load and store operations is reduced.
This eliminates the need for intermediate storage of the matrix elements after
each of the 'lj;p rotations. The range of values 'Ij; and p can take on is limited
by the number of available registers and the problem dimensions m and n.

1.2 Memory Hierarchy Parameterization
The efficacy of the superscalar parameterization depends on the capacity

of the caches to move data in and out of the registers in a timely fashion.
To enhance this capacity, the memory hierarchy parameterization procedure
is applied to tailor the amount of reuse among groups of 'lj;p rotations to the
sizes of the L-2 and L-l caches, respectively. To simplify the discussion,
let 'Ij; = p = 1. This effectively disables the superscalar parameterization
and allows discussion of the parameterization in terms of rotations instead of
blocks of 'lj;p rotations .

www.manaraa.com

Parallel Fast Givens QR Factorization 45

2

3

4

5

6

7

8

9

10

11

12

13

2 3 4 5 6 7 8 9 10
j

Figure 5.4. Superscalar parameterization and ordering within a superscalar block for the
case m = 13, n = 10, 'I/J = 3, and p = 2.

The execution of rotations

~-h+l,j, Ri-h+2,j,· .. , ~)j

uses rows i - h, i - h + 1, ... , i for h :S i :S m - n + 1 and j :S n. The
subsequent execution of rotations

reuses rows i - h + 1, i - h + 2, ... ,i and requires additionally row i + 1. If
both caches can store at least h + 2 rows, then elements in rows i - h + 1, i -
h + 2, . .. , i do not have to be retrieved from global memory before executing
the second group of rotations in column j + 1. The rows are already stored
in the cache. Elements are loaded into the caches as much as h fewer times,
or more generally for 1/J > 1, h1/J fewer times. The resulting ordering is
shown in Figure 5.5 and is essentially a scaled version of the superscalar
parameterization.

www.manaraa.com

46 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Figure 5.5. Memory hierarchy parameterization and ordering for the case m = 13, n = 10,
h = 2, 'Ij! = 3, and p = 2.

The second cache parameter d becomes necessary because the parameter
h is not likely to simultaneously satisfy the larger L-2 and the smaller L-l
caches. The L-2 cache is typically multiple orders of magnitude larger than
the L-l cache. If the L-2 cache is just large enough to store (h'lj; + p)n
elements, or roughly the number of elements involved in the execution of
h'ljJp rotations, then the problem of improving reuse in the L-l cache entails
decoupling its storage capacity from the width of matrix n. This decoupling
is accomplished by introducing a second cache parameter d such that the
L-l cache must store at least (2'IjJ + p)d elements. Two adjoining groups of
rotations with the same set of column indices, such as the ones depicted in
Figure 5.3, share p rows of data. The cache parameter d breaks the associated
computations that are involved in applying the rotation coefficients to columns
j + p - 1, j + p, ... , n into groups that operate on d columns or (2'ljJ + p)d
elements at a time. Of the (2'ljJ + p)d elements stored in the L-l cache, dp
elements are reused. Note that the cache parameter d has no influence on the

www.manaraa.com

Parallel Fast Givens QR Factorization 47

overall ordering of the rotations. It only affects the ordering of the component
computations.

1.3 Multiprocessor Parameterization
In addition to defining a family of subsequential orderings through the

dependency graph as depicted in Figures 5.4 and 5.5, the superscalar parame­
ters 'ljJ and p, and the memory hierarchy parameter h also define indivisible
groups of rotations of size at most h'ljJp. The multiprocessor parameter w is
introduced to aggregate these indivisible groups of rotations into tasks

Tll' T 1l+1' ••. ,Tll
~ ~ Tr

T 2, T 2+1" •• ,T22
T/ T/ Tr

T Ss , T SS+ 1"'" TSs
T/ Tl Tr

where

rt = rm - 11 max(l,s - ~ + 1) (5.1)

r.8
r = ,h1/J(S-I)+h1/J-l +11

h1/J+wp
(5.2)

S = rmh~ 11 + rmin(m -wI; n) - WPl (5.3)

for the synchronization index s = 1,2, ... , S. Task T: is defined to be the
set of rotations {Ri,j} such that

i = m - S + T + j - 1, m - S + T + j, ... , min(m - S - h1/J + T + j, 2)

j = l+f,2+f, ... ,min(f+wp,n)

where s = h1/J(s -1), T = (h1/J +wp)(r -I). f = wp(r -1), the task index
r = rt, rt + 1, ... , r:. and s = 1,2, ... , S. Figure 5.6 depicts the synchro­
nization and task indices for the case m = 13, n = 10, w = 1, h = 2, 1/J = 3,
and p = 1. There are no dependent cycles between tasks. As a consequence,
once a processor begins applying rotations in a task, all rotations in that task
are applied without any need for further synchronization. Also, from the
underlying dependencies between rotations, note that tasks sharing the same
synchronization index are independent and can be computed concurrently.
This leads to the definition of a concurrency set Cs = {T:., T:.+1, ••• , T:.}

I I r

for s = 1, 2, ... , S.
Concurrency sets are executed sequentially in the order in which they are

enumerated. This is sufficient to satisfy the underlying constraints among

www.manaraa.com

48 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

T/

T/

T/
7;1

T/
T/

T/

Figure 5.6. Synchronization and task indices for the case m = 13, n = 10, W = 1, h = 2,
1jJ = 3, and p = 1.

rotations and places no restriction on the order of execution for tasks within
a concurrency set.

As there are no restrictions on the order of execution for tasks within a con­
currency set, the computational load can be distributed across the processors
as evenly as possible. This is accomplished by parceling out to processors P
non-intersecting groups of tasks with roughly equal work in terms of floating­
point operations. By controlling the number of rotations that comprise a task,
the parameter w explores the tradeoff between improving reuse in the register
bank and the caches and evenly balancing the load among P processors. The
parameters h, 'l/J, and p were not explicitly designed to act as load balanc­
ing parameters. Nonetheless, they also control the number of rotations that
comprise a task and thus have an impact similar to the parameter w. The
range of values w, h, d, 'l/J, and p can take on is limited by the inequalities
1 ::; wp ::; n, 1 ::; h'l/J ::; m, and 1 ::; dp ::; n.

www.manaraa.com

Parallel Fast Givens QR Factorization 49

Before introducing the specifics of the load balancing algorithm, the fol­
lowing definitions are necessary: the arithmetic complexity of a set of tasks
A({T;, T;+l' ... T:+k}) is the total number of floating-point operations re­
quired to execute all the tasks in the set and the task partition <Ps of concur­
rency set Cs to mean a set of P + 1 integers {¢i, ¢~, ... , ¢P+l} that satisfy
the condition rt = ¢i ~ ¢~ ~ ... ~ ¢~+l = r: + 1. The problem of assign­
ing tasks to processors can now be formulated as finding a task partition <P s
of Cs such that

A({TJj' TJi+1,···' TJ2-1})

~ A({T;~,T;~+1, ... ,T;3-Il)

~ A({Tis, Tis , ... , Tis -I})
'4'p '4'P+l '4'P+l

for s = 1,2, ... , S.
The partition <Ps is computed in an iterative fashion. First, choose the

smallest possible integer value ¢~ such that

The next step is to choose the smallest possible integer value ¢~ such that

A(Cs - {TJs, TJS+l"'" TJS-l})
A({TJ2' TJ2+l'"'' TJs-Il) ~ 1 P ~ 1 2,

where the set notation A - B denotes A n Be. In general, the goal is to
choose the smallest possible integer value ¢~+1 such that

A({Tis, Tls+1, .. ·, Tis -d)
'4'p '4'p '4'p+l

A(Cs - {TJj' TJj+l"'" TJ~-l})
>

P-p+1
(5.4)

for p = 1,2, ... , P - 1. If each of the tasks T;., T;S+l"'" T;s_l are
I I r

comprised of exactly wh'IjJp rotations and that task T:s is comprised of h'IjJ
rotations for s = 1,2, ... ,S, then r

and

www.manaraa.com

50 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

where iI,~ = n - (cp~ - l)wp. n~ = (T: - Cp~ + l)wp - wp + 1, and J>s =
(CP~+l - cp~)wp. By setting Eqs. 5.5 and 5.6 equal.

- 7 1 2ns - 14 - 4i1,s
cps = _ + il,s - _ (14 + 4i1,s)2 + 8ns P p. (5.7)

2 P 4 P P P-p+1

The following algorithm computes CP~+l for p = 1,2, ... , P -1 that satisfies
Eq. 5.4:

Algorithm: LB (Load Balancing)

Input(s, P, m, n, w, h, '0, p)

Use Eqs. 5.1 and 5.2 to determine Tt and T:. respectively

"'s _,.,..8
If'l - 'l

CPP+l = T: + 1

For p = 1 to P - 1

Use Eq. 5.7 to solve for cps

CP~+l = rrJ>sl/(wp)l + CP~
End For

cps = {cpi, cP~, ... , cpp}

Ouput(cpS)

The LB algorithm computes the partitions cp}, CP2,' .. ,CPS. The description
of the new parameterized parallel fast Givens algorithm is straightforward.

Algorithm: PFG (Parameterized Parallel Fast Givens)

Input(A, D, P, w, h, d, '0, p)

[m, n] =dimensions(A)

Compute S from Eq. 5.3

For s = 1 to S

Compute CPs using the LB Algorithm

DO IN PARALLEL

For p = 1 to P

For T = CP~ to CP~+1 - 1
Apply rotations in task T:

www.manaraa.com

Parallel Fast Givens QR Factorization

End For

End For

End For

Output(A, D)

2. Communication Procedures

51

For shared memory, communication is managed by the hardware and sys­
tem software as a function of the real-time data requirements of the executing
algorithm. Identifying the variables that need to be exchanged among proces­
sors to satisfy dependencies between concurrency sets is not necessary. This
is not true for synchronous and asynchronous message passing. The algorithm
explicitly controls how and when variables are exchanged among processors.
This section describes the communication strategy for how and when variables
are exchanged using two different message passing protocols: synchronous
and asynchronous. For both protocols, explicit send and receive operations
are necessary to satisfy dependencies among tasks. While the synchronous al­
gorithm shares the same task sequencing scheme as the PFG algorithm, tasks
are reordered for the asynchronous algorithm to take advantage of the archi­
tecture's ability to perform computation and communication simultaneously.

2.1 Synchronous Message Passing
For synchronous message passing, dependencies between concurrency sets

are characterized in terms of rows. Processors determine the rows to exchange
by computing the row range fs for each concurrency set Cs . The row range
f s is a set of P + 1 integers 1'f, 1'~, ... ,1'1>+1 that satisfy the condition 1 =
1'f s 1'2 s ... S 1'1>+1 = m + 1. Before any task in Cs can be executed
on processor p, rows 1'; through 1';+1 - 1 must be stored in local memory.
Given the task partition ~s of Cs , compute

1'~+1 = min(m - 8 + (¢;+1 - 2)(h1jJ + wp)
-pmin(O, ¢~+1 - ¢~ - 1)(wp + 1) + wp, m + 1) (5.8)

where 8 = h1jJ(s - 1) for p = 1,2, ... ,P - 1 and s = 1,2, ... , S. For each
f s and processor p E {1, 2, ... , P}, the communication strategy is defined
by the following procedure:

Procedure: SP (Synchronous Message Passing)

Step 1: Compute fs from Eq. 5.8

Step 2: If s = 1 then go to Step 13; else continue

www.manaraa.com

52 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Step 3: If p - 1 is ODD go to Step 9; else continue

Step 4: If p =1= 1 and ,;-1 < ,; then send rows [,;-1 : ,; - 1J to P - 1

Step 5: If p =1= P and ,;+i > ';+1 then send rows b:+1 : ,;+i - 1J to
p+l

Step 6: If p =1= 1 and ,; < 7;-1 then receive rows b; : 7;-1 - 1J from
p-1

Step 7: If p =1= P and 7;+1 > 7;+i then receive rows [,;+i : ';+1 -1 J from
p+1

Step 8: Stop

Step 9: If p =1= P and 7;+1 > 7;+ i then receive rows b;+ i : ';+1 - 1] from
p+1

Step 10: If p =1= 1 and 7; < 7;-1 then receive rows b: : ,;-1 - 1J from
p-1

Step ll: If p =1= P and 7;+i > 7;+1 then send rows b;+l : 7;+~ - 1J to
p+l

Step 12: If p =1= 1 and 7;-1 < 7; then send rows b;-1 : 7; - 1J to p - 1

Step 13: Stop

A new synchronous message passing version of the PFG algorithm is pre­
sented below. It includes one additional input parameter p. The parameter p
is a unique integer identifying the processor.

Algorithm: SYNC (Synchronous Version of the PFG)

Input(A, D, P, w, h, d, 'I/J, p,p)

[m, n] =dimensions(A)

Compute S from Eq. 5.3

For s = 1 to S

Compute CPs using the LB Algorithm

Compute fs using Eq. 5.8

Communicate using the SP Procedure

For T = ¢~ to ¢~+l - 1

Apply rotations in task T:

www.manaraa.com

Parallel Fast Givens QR Factorization

End For

End For

Output(A, D)

2.2 Asynchronous Message Passing

53

The communication strategy employed for synchronous message passing
has the effect of globally synchronizing all processors at the start of each
concurrency set. For the asynchronous algorithm, the global, synchronous
send and receive operations are separated into local, asynchronous operations
among neighboring processors. Neighbors exchange the appropriate rows
of the matrix asynchronously to satisfy dependencies between concurrency
sets. Executing computation simultaneously with communication can hide
the latency associated with these exchanges.

To accomplish the interlacing of computation and communication, depen­
dencies between consecutive concurrency sets must be characterized in terms
of tasks instead of rows. The goal is to identify those tasks with dependen­
cies that are shared across multiple processors. By scheduling those tasks
last among the group of tasks to be executed, the necessary communication
can be completed in advance. In general, Tk depends on T~=t and T:- 1 for
k = Tt+1,Tt+2, ... , T; for concurrency sets 8-1 and 8 from the underlying
dependencies among rotations. These dependencies only result in interproces­
sor communication if one or both of the tasks Tr~t and T:- 1 have been as­
signed to a different processor than Tt. However. the following properties of
the LB algorithm show that dependencies between concurrency sets 8 - 1 and
8 that may result in communication for processor p are limited to tasks T;i,"-\'
T~;_\ -1' TJ., and TJs -1' More specifically, if T:=t is assigned to proces-

"'p+l p p+l

sor p, T:-1 is assigned to processor p + 1, and k = 4>~+~ =1= Tt =1= T;; then
Tt is either assigned to processor p or p + 1, Tk+1 is assigned to processor

p + 1. and 4>;+1 - ¢~+l ::; 1 for p = 1,2, ... ,P - 1 and 8 = 2,3, ... , S.

P 2 1]fl' A.S A.s-1 s s-l d A.s-1 ROPERTY . lj 'l'p = 'l'p ,Tr = Tr ,an 'l'p+l
A.s-1
'l'p+1'
Proof']1' A.S = A.s-1 and 7,s = 7,8-1 then • :J 'l'p 'l'p r r

A(C8 - {TJf,TJf+l,,,·,TJ~-l})

= A(Cs- 1 - {T;;-_ll' T;;-_11 +1 , ... ,T;::-_l})'

Therefore, 4>~+1 = ¢;+i·

www.manaraa.com

54 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

PROPERTY 2.2 If ¢~ = <p~-l and r; = r;-l + 1, then ¢~+l - ¢;:t:i ~ 1.
Proof: By definition,

forp= 1,2, ... ,P. If

_ _ _ 14ns- 1 + 4ns- 1ns- 1 _ 2{ns- 1)2
14¢s-1 + 4 -s-l¢s-l _ 2(¢8-1)2 = P P P P

np p_ p+ 1 '

then

satisfies Eq. 5.4. From Eq. 5.5, if ¢~+1 i r: + 1, then

14(~8-1 + wp) + 4n~-1(~S-1 + wp) - 2(~s-1 + Wp)2

= 14~8-1 + 4n~-1~S-1 - 2(~s-1)2 + A(T1.-d
'l'p+l

or if ¢~+1 = r: + 1, then

14(1)8-1 + 1) + 4nr1(1)8-1 + 1) - 2(1)S-1 + 1)2

= 141)8-1 + 4n~-11)S-1 - 2(~8-1)2 + A(T1.-t}.
'l'p+l

If ~s-l + wp for 1)8 is substituted in the LB algorithm, then

and

rr~s-1 + 11/(wp)1 + <p~ ~ rr~s-l + wpl/{wp)l + <p~.

Thus, from Eq. 5.9, <P~+1 - ¢;:t:~ ~ l.

PROPERTY 2.3 If ¢~ = ¢~-1 +1 and r; = r;-1+1, then <P~+1 -<p;:t:~ ~ 1.
Proof: If

""s ""s-1 1
'+'p+1 - '+'p+1 > .

www.manaraa.com

Parallel Fast Givens QR Factorization 55

and

14¢S-l + 4nrl¢S-1 _ 2(¢s-1?

14n~-1 + 4nrln~-1 - 2(n~-1)2

P-p+1
(5.10)

then

14~s-l + 4(n;-1 _ wp)~s-l _ 2(~s-1)2

14n~-1 + 4(n~-1 - wp)n;-l - 2(n~-1)2
< P-p+1

This implies that
8-1

- 1 n 4>s- > p
P-p+l

Substituting
_ n s- 1

4>s-l = P + E.
P-p+1

into Eq. 5.10 leads to a contradiction for E > O. Thus, 4>~+ 1 - 4>~+ i :::; 1.

PROPERTY 2.4 If 4>~ = 4>;-1 + 1 and r: = r:-1 then 4>;+1 - 4>~+i :::; 1.
Proof: If

and

then

""'s ,,",8-1 > 1
'f'p+1 - 'f'p+1 .

P-p+1
(5.11)

14¢s-1 + 4(n;-1 _ wp)~s-l _ 2(~s-1)2

14(nr1 - wp) + 4(n;-1 - wp)(nr1 - wp) - 2(n;-1 - wp)2
< P-p+1

This implies that

_ 1 + ns- 1 + '!:!!.1!. ns- 1
4>8-1 > 2 p 2 > p

P-p+l P-p+1

From Property 2.3, this leads to a contradiction. Thus, 4>~+1 - 4>;+.i :::; 1.

For asynchronous message passing, the communication strategy is defined
by the following procedure to manage the asynchronous send and receive
operations.

www.manaraa.com

56 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Procedure: AP (Asynchronous Message Passing)

Step 1: If 1 < r then compute

'Y: = min(m - s + (¢~ - 2)(h~ + wp)

-(r - 2)(wp + 1) min(O, ¢: - ¢:-1 - 1) + wp, m + 1);

else set 'Y1 = 1

Step 2: If r < P then compute

'Y:+1 = min(m - s + (¢;+1 - 2)(h~ + wp)
-(r - l)(wp + 1) min(O, ¢:+1 - ¢: - 1) + wp, m + 1);

else set 'YP+1 = m + 1

Step 3: If s = 1 then go to Step 13; else continue

Step 4: If r - 1 is ODD go to Step 9; else continue

Step 5: If r =1= 1 and 'Y:- 1 < 'Y: then send rows b:-1 : 'Y: - 1] to r - 1

Step 6: If r =1= P and 'Y:+i > 'Y:+1 then send rows b:+1 : 'Y:+i - 1] to
r+1

Step 7: If r =1= 1 and 'Y: < 'Y:-1 then receive rows b: : 'Y:- 1 - 1] from
r-l

Step 8: If r =1= P and 'Y:+1 > 'Y:+i then receive rows ['Y:+i : 'Y:+1 -1] from
r+1

Step 9: Stop

Step 10: If r =1= P and 'Y:+1 > 'Y:+i then receive rows b:+i : 'Y:+1 - 1]
from r + 1

Step 11: If r =1= 1 and 'Y: < 'Y:-1 then receive rows ['Y: : 'Y:- 1 - 1] from
r-1

Step 12: If r =1= P and 'Y:+t > 1':+1 then send rows [1':+1 : 1':+i - 1J to
r+1

Step 13: If r =1= 1 and 'Y:-1 < 'Y: then send rows b:-1 : 'Y: - 1J to r - 1

Step 14: Stop

A new asynchronous message passing version of the PPG algorithm is
presented below. It includes one additional input parameter p. The parameter
p E {I, 2, ... , P} is a unique integer identifying the processor.

www.manaraa.com

Parallel Fast Givens QR Factorization

Algorithm: ASYNC (Asynchronous Version of the PFG)

Input(A, D, P, w, h, d, 'I/J, p, p)

[m, nJ =dimensions(A)

Compute S from Eq. 5.3

For s = I to S

Compute ~8 using the LB Algorithm

Compute rs using Eq. 5.8

For T = ¢~ + I to ¢~+l - 2

Apply rotations in task T:
End For

Communicate using the AP Procedure

If ¢; < ¢~+1 then apply rotations in task T;~

If ¢ps < ¢;+1 - 1 then apply rotations in task Tis -1
'l'p+l

End For

Output(A, D)

57

Although not explicitly shown here, separating the receive and send opera­
tions in time is often recommended and can improve performance depending
upon the implementation of the asynchronous operations.

2.3 Hybrid Shared Memory/Message Passing
The hybrid version of the parallel fast Givens algorithm derives the major­

ity of its structure from the message passing version described in the previous
section. For each processor r E {I, 2, ... , Pm} in the message passing envi­
ronment, the hybrid version employs shared memory directives to distribute
its work to S shared memory processors. From an organizational perspective,
message passing plays the supervisory role. However, from a computational
perspective, the hybrid version makes no distinction between the environ­
ments.

The hybrid and message passing versions differ in how the communication
requirements for each message passing processor r are distributed to separate
shared memory processors in the hybrid version where it is assumed that S >
1. The hybrid version employs the LB algorithm to compute a partition <P s for
P = PmPs. Each processor r E {I, 2, ... , Pm} is assigned Ps independent
groups of tasks. A shared memory directive distributes these groups of tasks
to S processors for concurrent execution. While the communication network

www.manaraa.com

58 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

is also a linear array, the basic building block is no longer a single processor.
For the hybrid, a linear array constructed around clusters of processors that
share memory is assumed. The burden of communicating with the neighbors
r -1 and r + 1 can be distributed to separate processors P E {Pl, Pl + 1, ... ,Pr }
in the shared memory environment where PI = (r -1)Ps and Pr = rPsr-l
are the left and right shared memory processors for communication purposes.
The following procedure is used to manage communication in the hybrid:

Procedure: HMP (Hybrid Message Passing)

Step 1: Set PI = (r - I)Ps and p,. = rPs - 1

Step 2: Compute r s from Eq. 5.8

Step 3: If s = 1 then go to Step 15; else continue

Step 4: If r - 1 is ODD go to Step 10; else continue

Step 5: If P = PI and 1':-1 < 1': then send rows [1':-1 : 1': - I] to r - 1

Step 6: If P = Pr and 1':+i > 1':+1 then send rows h:+1 : 1':+i - I] to
r+l

Step 7: If P = Pl and 1': < 1':-1 then receive rows [1': : 1':-1 - I] from
r-l

Step 8: If P = Pr and 1':+1 > 1':+i then receive rows h:+i : 1':+1 - IJ
from r + 1

Step 9: Stop

Step 10: If P = Pr and 1':+1 > 1':+i then receive rows b:+i : 1':+1 - 1]
from r+ 1

Step 11: If P = PI and 1': < 1':-1 then receive rows h: : 1':-1 - 1] from
r-l

Step 12: If P = pr and 1':+i > 1':+1 then send rows [1':+1 : 1':+i - I] to
r+l

Step 13: If P = PI and 1':-1 < 1': then send rows b:-1 : 1': - I] to r - 1

Step 14: Stop

Note, if Ps = 1 and Pm > 1, then the burden of communicating with the
neighboring processors is managed sequentially by processor r. The hybrid
version is described as follows:

www.manaraa.com

Pamllel Fast Givens QR Factorization

Algorithm: Hybrid Version of the PFG

Input(A, D, Pm, Ps , W, h, d, 1/J, p, r)

[m, n] =dimensions(A)

Compute S from Eq. 5.3 and set PI = (r - l)Ps and Pr = rPs - 1

For s = 1 to S

Compute <I> s using the LB Algorithm for P = P mPs

PARALLEL LOOP

For P = PI to Pr

If P = PI Then
Communicate using the HMP Procedure

End If

If P = Pr Then
Communicate using the HMP Procedure

End If

Apply rotations in tasks [Tl., Tls+1,' .. ,Tis -1]
'f'p 'l'p 'l'p+l

End For

End For

Output(A, D)

3. Related Work

59

Parallel orthogonalization algorithms based on Givens rotations have been
widely studied. During the past 5 years, however, the widespread availabil­
ity of tuned kernels for perfonning matrix-matrix multiplication has relegated
Givens-based algorithms to specialized applications only. Unlike Householder­
based solution procedures, the component computations of Givens-based so­
lution procedures cannot be efficiently cast in terms of matrix-matrix mul­
tiplication. As a consequence, most of research on parallel Givens-based
algorithms predates 1995, including the following:

Sameh and Kuck, 1978

Lord et a1., 1983

Modi and Clarke, 1984

Cos nard et al., 1986

www.manaraa.com

60 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Dongarra et al., 1986

Chamberlain and Powell, 1988

Porta, 1988

Chu and George, 1989

Jainandunsing and Deprettere, 1989

Pothen and Raghavan, 1989

Louka and Tchuente, 1988

Wright, 1991

Larriba-Pey et aI., 1992

Badia et al., 1994

Meyer and Pascale, 1995

Wilburn et al., 1996

Lucka et al., 1996

Maslennikow et aI., 1998

Many of the proposed methods are based on a regularized mapping of the
matrix elements to processors. For instance, Lord et al. map the matrix by
columns and by diagonal bands. Pothen and Raghavan map the matrix by row,
and the rows are wrapped to a ring of processors. A distinguishing feature
of the approach used in this chapter is the atypical mapping of the matrix
elements to processors. The mapping scheme distributes the computational
work of a group of independent tasks as evenly as possible.

4. Experimental Results
The experimental results are divided across two sections: Sections 4.1

and 4.2. Section 4.1 contrasts and compares the three implementations of
the parallel fast Givens PFG (shared memory), SYNC (synchronous message
passing), and ASYNC (asynchronous message passing). The results compare
the minimum execution times of the implementations for various values of
m and n on a 128-processor SGI Origin 2000 and 64-processor HP SPP-
2000. Section 4.2 examines the performance characteristics of a hybrid shared
memory/message passing version of the PFG algorithm on a 32-processor IBM
SP3 as well as the HP and the SGI.

www.manaraa.com

Parallel Fast Givens QR Factorization 61

4.1 Shared Memory and Message Passing
For comparison purposes with PFG, SYNC, and ASYNC, the results in this

section include the execution times of three competing parallel algorithms.
These are two shared memory versions of LAPACK's DGEQRF: SGIMATH­
DGEQRF and MLIB-DGEQRF available with the mathematical subroutine
libraries MLIB and SGIMATH for the HP and SGI respectively, and ScaLA­
PACK's distributed QR factorization algorithm ScaLAPACK-PDGEQRF. All
three algorithms require a user-specified parameter LWORK, and the rec­
ommended value returned in the output parameter WORK is used. For
ScaLAPACK-PDGEQRF, the values of the four user-defined parameters are
determined experimentally. The parameters are the number of Pr rows and
Pc columns in the process grid, and blocking factor variables br and be for
controlling block cyclic distribution.

Before SYNC and ASYNC can be executed, the matrix A must be stored
in the local memory of processor 1. Upon completion, the upper triangular
result also is stored in processor 1. To compare the performance character­
istics of ScaLAPACK's distributed QR factorization algorithm PDGEQRF
with our message passing implementations, the reported execution times for
ScaLAPACK-PDGEQRF include the cost of distributing the matrix A from
processor 1 to the other P - 1 processors. This includes the time to broadcast
the matrix A from processor I to the other processors and the time to pack the
data on the local processor for block cyclic execution. Even though the upper
triangular result is also distributed across P processors in packed format upon
completion, this is not included in the costs associated with gathering the final
result and storing it on processor 1. The true nature of this cost would depend
on the processing to follow.

The number of integer combinations of the parameters that satisfy 1 :::;
h'lj; :::; m, 1 :::; wp :::; n, and 1 :::; dp :::; n is potentially large and devising
an efficient procedure for choosing optimal or near optimal combinations is
beyond the scope of this book. Nonetheless, some definitive patterns have
emerged in the results that can guide the end user in selecting the combinations
that produce high levels of performance. These patterns are discussed in the
following paragraphs.

Tables 5.1 and 5.3 present the minimum execution times of the three
implementations of the parallel fast Givens algorithms PFG, SYNC, and
ASYNC; two vendor-tuned, shared memory versions of LAPACK's DGE­
QRF algorithm MLIB-DGEQRF and SGIMATH-DGEQRF; and a version of
ScaLAPACK's distributed QR factorization algorithm PDGEQRF for the SGI
ScaLAPACK-PDGEQRF. The three implementations outperform the compet­
ing algorithms for all values of m and n on both the SGI and the HP. For the
cases where m ~ n = 1500 and 500 ~ m ~ n = 100, the lowest execution
times are obtained with the PFG algorithm on the SGI. The lowest execution

www.manaraa.com

62 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

HP m = 3000 m = 1500 m = 1500 m=500 m=500

Algorithm
n = 1500 n = 1500 n= 500 n = 500 n == 100 Implemenlulion

PFO 2.65 1.11 0.240 0.088 0.0198 Shared Memury

SYNC
2.00 0.95 0.293 0.124 0.0177 Blocking MPI

ASYNC
1.98 0.86 0.287 0.106 0.0190 Nun-Bluc"ini MPI

MLIB
3.90 1.19 0.570 0.212 0.0426 Shwed Memory

Table 5.1. Minimum execution times in seconds on the HP SPP-2000.

times for 1500 ~ m ~ n = 500 are obtained with the PPG algorithm on the
HP. The corresponding parameter settings for the SGI and HP are presented
in Tables 5.2 and 5.4, respectively.

HP m = 3000 m = 1500 m = 1500 m==500 m==500
Parameter n == 1500 n == 1500 n == 500 n== 500 n== 100

PFO 16 16 16 16 7
p SYNC 48 42 24 18 10

ASYNC 45 50 18 12 7
PFO 3 2 2 5 4

w SYNC 2 4 2 2 3
ASYNC 2 2 2 2 2
PFO 3 3 8 7 12

h SYNC 6 6 4 4 10
ASYNC 6 7 6 7 9
PFO 500 500 167 167 34

d SYNC 500 500 167 167 34
ASYNC 500 500 167 167 34
PFO 2 2 2 2 2

1/J SYNC 2 2 2 2 2
ASYNC 2 2 2 2 2
PFO 3 3 3 3 3

P SYNC 3 3 3 3 3
ASYNC 3 3 3 3 3

Table 5.2. Optimal parameter settings on the HP SPP-2000 for Table 5.1.

In Sections 1.1 and 1.2, superscalar parameters 1/J and p and the cache
parameters hand d are introduced, respectively. The parameters control the

www.manaraa.com

Pamllel Fast Givens QR Factorization 63

SGI m = 3000 m = 1500 m = 1500 m = 500 m=500

Algorithm
n = 1500 n == 1500 n= 500 n == 500 n= 100 Imp)ementutic:m

PFO 1.74 1.01 0.283 0.114 0.0153
Shared Meml1l y

SYNC
2.38 1.14 0.323 0.111 0.0180

Bludin¥ MPI

ASYNC
2.41 1.08 0.281 0.111 0.0168 Nlln-Blu.:kinw. MPI

SOIMATH
10.00 3.32 1.230 0.294 0.0440 Shared MemOl'),

ScaLAPACK
4.11 2.89 0.728 0.260 0.0420 BLACs

Table 5.3. Minimum execution times in seconds on the SOl Origin 2000.

amount of reuse in the register bank and the caches. Along with the load
balancing parameter w introduced in Section 1.3. the parameters h. 1/J. and
p also control the number of rotations that comprise a task or the relative
amount of fine-grain and coarse-grain parallelism present in the algorithm.
Despite the fact that no quantitative model to characterize this tradeoff exists.
handful of qualitative observations can be gleaned from the results to guide
the end-user in choosing a parameter combination that results in high levels
of performance. From Tables 5.2 and 5.4. it is clear that the superscalar
parameters are invariant to the machine. implementation, and problem dimen­
sions. For h > 1. the parameter d controls reuse in the L-l cache between
two adjoining groups of 1/Jp rotations. As a result, optimal settings for d are
largely invariant to m. n. P, w, and h. Variations in the settings for the
SOl can be attributed to the fact that the L-l cache is large enough to store
{21/J + p)n elements for n ~ 500. As a consequence, the parameterization is
unnecessary and is effectively disabled by setting d ;::: f500 / p 1- Because the
HP has only a single cache, the parameterization is disabled for all matrix
dimensions. Making the number of rotations that comprise a task as small as
possible reduces load imbalance. For fixed 'IjJ and p, this means reducing h
and w. Reuse in the L-2 cache. however, improves with increasing h and to a
lesser extent with increasing w > 1 until the capacity of the cache is reached.
Because optimal settings for hand w are nearly constant for various values
of m and n, the benefits of reducing load imbalance outweigh the benefits
of reuse. For both the SOl and the HP, optimal settings for w fall between 2
and 5. Optimal settings for h fall between 5 and 16 on the SGI and between
3 and 12 on the HP. The cardinality of the largest concurrency provides the

www.manaraa.com

64 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

following upper bound on P:

P < [h7jJ r ~ - II + h7jJ - 11.
- h7jJ + wp

For instance, P ~ 100 for the case SI in Table 5.4.

SGI m = 3000 m = 1500 m = 1500 m=500 m=500
Parameter n = 1500 n = 1500 n = 500 n = 500 n= 100

PFG 96 91 38 16 8
P SYNC 32 25 15 19 7

ASYNC 28 37 13 13 7
PFG 2 2 2 5 4

UI SYNC 2 2 2 2 2
ASYNC 2 2 2 2 2
PFG 12 5 16 7 7

h SYNC 5 7 7 7 7
ASYNC 7 5 7 6 7
PFG 176 176 167 167 34

d SYNC 176 176 167 167 34
ASYNC 176 176 167 167 34
PFG 2 2 2 2 2

1j; SYNC 2 2 2 2 2
ASYNC 2 2 2 2 2

PFG 3 3 3 3 3
p SYNC 3 3 3 3 3

ASYNC 3 3 3 3 3

Table 5.4. Optimal parameter settings on the SOl Origin 2000 for Table 5.3.

In Figures 5.7 and 5.8, the sensitivity of the execution times to P for ex­
perimentally determined optimal values of the parameters w, h, d, 7jJ, and p
and for the case m = 3000 and n = 1500 are explored. For comparison
purposes, th optimal execution times of ScaLAPACK-PDGEQRF in Figure
5.8 and MLIB-DGEQRF are included in Figure 5.7. SYNC and ASYNC
consistently outperform MLIB-DGEQRF and ScaLAPACK-PDGEQRF. In
addition, Figure 5.8 shows that the shared memory implementation outper­
forms the two message passing implementations on the SGI. On the HP, both
message passing implementations outperform the shared memory implementa­
tion as depicted In Figure 5.7. SGIMATH-DGEQRF is omitted in Figure 5.8
because all execution times were above 6.0 seconds. For the HP. the shared
memory algorithm achieves its best results when P :::; 16 or when the job is
limited to a single hypemode. Performance degrades for each additional hy­
pemode added at P = 17, P = 33, and P = 49. The benefits of P > 16 are

www.manaraa.com

Parallel Fast Givens QR Factorization 65

negated entirely by the cost of running a shared memory job across multiple
hypernodes.

Tables 5.2 and 5.4 show the optimal parameter settings for the execution
times presented in Table 5.1. Tables 5.5 and 5.6 compare the optimal execu­
tion times with those execution times obtained using the optimal parameter
settings for the SGI on the HP and for the HP on the SGI. In most cases, us­
ing suboptimal parameters leads to dramatically slower results. This is most
evident on the SGI where suboptimal parameter settings in some cases nearly
double the execution time. Overall, the HP is less sensitive to changes in the
parameters. Execution times could not be obtained for cases S 1 and S4 on
the HP because the cases exceeded the number of processors available on the
system.

6.0

~
s.o

15
~ 4.0
.:
~ 3.0 1=

. ~
2.0 " i:

~
1.0

0 .0

o 10 20 30 40 50
p

60 70 80 90 100

Figure 5. 7. Minimum execution times as function of the number of processors P on the HP
for the case m = 3000 and n = 1500.

4.2 Hybrid Message Passing/Shared Memory
To investigate whether or not blending message passing and shared mem­

ory programming environments enhance performance, extensive timing exper­
iments were conducted on a 64-processor HP SPP-2000, a 128-processor SGI
Origin 2000, and a 32-processor IBM SP3 using the hybrid version of the
parallel fast Givens algorithm. Presented in this section is a small subset of
the collected data and a summary of our findings.

Our evaluation compares the same four problems on all three machines.
The reported execution times are based on the following initial and final
conditions: 1) before execution can begin, the matrix A must be stored in the
local memory of processor 1; and 2) upon completion, the upper triangular
result is stored in the local memory of processor 1. In addition, the reported

www.manaraa.com

66

.;s 5.0
c
0
<> 4.0 !l
.: ..,
~ 3.0

" .2
S 2.0
~
><

UJ
1.0

0.0

PARALLEL ALGORITHM SYNTHESIS PROCEDURE

---PFG
--!<- SYNC-PFG

- ' ASYNC-PFO
-.. - ScaLAPACK:PD2~~

~==~~~~::=";:*"-='---r--'---'----r --~--,..---l

0 10 20 30 40 50
p

60 70 80 90 100

Figure 5.B. Minimum execution times as function of the number of processors P on the
sur for the case m = 3000 and n == 1500.

HP m = 3000 m = 1500 m = 1500 m = 500 m=500

Algorithm
n = 1500 n = 1500 n = 500 n = 500 n = 100

Implc:menl;aliun

PFG 2.65 1.11 0.240 0.088 0.0198
Sha,,~d Melllory NA NA 0.313 0.088 0.0337

SYNC 2.00 0.95 0.293 0.124 0.0177
BIOI: king MPI 2.40 1.22 0.355 0.127 0.0235

ASYNC 1.98 0.86 0.287 0.106 0.0190
Non.hlnd : ing MPI 2.25 1.03 0.320 0.120 0.0229

Table 5.5. Sensitivity to variations in the parameter settings on the HP SPP-2000.

execution times are based on experimentally determined optimal values of the
blocking parameters. Performance in Mflops is based on the assumption that
the number of floating-point operations to compute the QR factorization of a
real m x n matrix is approximately 2n2(m - n/3).

The HP SPP-2000 is comprised of four shared memory nodes with 16
processors. The IBM SP3 also is comprised of four shared memory nodes
with each node containing eight processors. The SGI is comprised of 64
nodes with each node containing two processors.

As evidenced in Tables 5.7-5.10, mixed blends - Pm > 1 and Ps > 1 -
enhance algorithm performance on the HP and IBM for P > 16. In particular,
when P is divisible by two, mixed blends outperform all others on the HP.

www.manaraa.com

Parallel Fast Givens QR Factorization 67

SGI m = 3000 Tn = 1500 Tn = 1500 m=500 m=500

Algorithm
n = 1500 n = 1500 n= 500 n = 500 n = 100

Implementoltion

PFG 1.74 1.01 0.283 0.114 0.0153
Shared Memury 3.55 1.79 0.380 0.114 0.0155

SYNC 2.38 1.14 0.323 0.111 0.0180
Bluckin!! MPI 3.10 1.37 0.365 0.139 0.0187

ASYNC 2.41 1.08 0.281 0.111 0.0168
Non-blclI,.-kmg MPI 5.72 1.92 0.657 0.274 0.0179

Table 5.6. Sensitivity to variations in the parameter settings on the SGI Origin 2000.

Architectural constraints limit shared memory and message passing operation
to eight and 16 processors, respectively on the IBM. As a consequence, blends
for P E {17, 19, 22, 23, 25, 27, 29,30,31} are not available (NA) on the sys­
tem. For P E {18, 20, 21, 24, 28, 32}, only mixed blends are possible. As a
general rule, minimizing the number of message passing processors delivers
the best performance on the IBM. For the SGI, shared memory outperforms
all other blends in almost every case regardless of P.

While Tables 5.7-5.10 show blending to be beneficial, the magnitude of
the benefits is unclear. In Tables 5.11, 5.12, and 5.13, execution times for
all possible blends in the case P = 6, P = 12, and P = 24 for each of
three machines are presented. These special cases are highlighted because
they have at least four blends, and as many as eight. In addition, the HP
SPP-2000, IBM SP3, and SGI Origin 2000 are constructed around nodes
of 16, eight, and two processors, respectively. These cases were chosen to
encompass multiple nodes for the machines. For example, in Table 5.11 the
best and worst blends differ by an astounding 371 seconds on the HP for
P = 24, m = 3000, and n = 1500. While differences on the IBM and SGI
are not nearly as significant, the best blends still outperform the worst blends
by a wide margin in many cases. In general, where M exceeds the number
of nodes on the machine, performance suffers. While the number of nodes
on the SGI is large, the HP and IBM are comprised of only four nodes.

The benefits of hybrid parallelism in the context of QR factorization are
clear. By manipulating the number of shared memory processors and message
passing processors, high levels of performance can be extracted from three
machines on a variety of problems. Neither pure shared memory, pure mes­
sage passing, mixed blends, nor any particular computer architecture delivers
consistently superior performance for P = 1,2, ... ,32 and various values of

www.manaraa.com

68 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

HP IBM SGI
p M S Time (s) M S Time (s) M S Time (s)
1 1 1 32.51 1 1 18.03 1 1 22.80
2 1 2 16.97 1 2 9.91 1 2 13.54
3 1 3 11.94 1 3 6.95 1 3 9.07
4 1 4 9.12 1 4 5.55 1 4 7.23
5 1 5 7.43 1 5 4.70 1 5 6.09
6 1 6 6.26 1 6 4.09 1 6 5.34
7 1 7 5.43 1 7 3.80 1 7 4.85
8 1 8 4.84 I 8 3.49 1 8 4.36
9 1 9 4.35 1 9 3.17 1 9 4.15

10 1 10 4.02 1 10 2.97 1 10 3.82
11 I 11 3.72 I II 2.81 1 11 3.60
12 I 12 3.41 1 12 2.68 1 12 3.45
13 1 13 3.20 1 13 2.62 1 13 3.32
14 1 14 3.00 1 14 2.52 1 14 3.17
15 I 15 2.81 1 15 2.44 1 15 3.10
16 1 16 2.69 8 2 2.34 1 16 2.98
17 17 I 2.82 NA I 17 2.92
18 2 9 2.50 6 3 2.49 I 18 2.84
19 19 1 2.64 NA 1 19 2.75
20 2 10 2.35 5 4 2.38 I 20 2.70
21 21 1 2.53 7 3 2.29 I 21 2.63
22 2 11 2.20 NA I 22 2.64
23 23 I 2.38 NA I 23 2.59
24 2 12 2.07 8 3 2.12 1 24 2.54
25 25 1 2.27 NA I 25 2.50
26 2 13 2.00 NA I 26 2.47
27 27 1 2.19 NA 1 27 2.44
28 2 14 1.91 7 4 2.15 1 28 2.38
29 29 1 2.17 NA 1 29 2.36
30 2 15 1.86 NA 1 30 2.33
31 31 1 2.14 NA 1 31 2.33
32 2 16 1.80 8 4 1.92 I 32 2.34

Table 5.7. Execution times as a function of P for experimentally determined optimal blends
on the HP SPP-2000, IBM SP3, and SOl Origin 2000 in the case m = 3000 and n = 1500.

m and n. At least in the context parallel QR factorization, generalizations
regarding the superiority of one programming environment over another are
clearly misleading. Though for P :S 16, pure message passing on the IBM
generally outperforms all other blends on the HP, IBM, and SGI. For P > 16,
the ranking of machines and programming environments is highly dependent
on the value of P. The hybrid version affords the end user the necessary
flexibility to navigate this complex operating environment.

www.manaraa.com

Parallel Fast Givens QR Factorization 69

HP IBM SGI
p M S Time (8) M S Time (8) M S Time (8)

1 1 1 12.91 1 1 7.23 1 1 9.05
2 1 2 6.44 2 1 4.01 1 2 5.37
3 1 3 4.48 3 1 2.92 1 3 3.84
4 1 4 3.66 4 1 2.34 1 4 3.14
5 1 5 2.96 5 1 2.06 1 5 2.74
6 1 6 2.54 6 1 1.85 1 6 2.45
7 1 7 2.23 7 1 1.68 1 7 2.23
8 1 8 1.99 8 1 1.57 1 8 2.05
9 1 9 1.80 9 1 1.51 1 9 1.98

10 1 10 1.65 10 1 1.44 1 10 1.90
11 1 11 1.52 11 1 1.37 1 11 1.81
12 1 12 1.42 12 1 1.33 1 12 1.75
13 1 13 1.33 13 1 1.30 1 13 1.70
14 1 14 1.26 2 7 1.22 1 14 1.63
15 1 15 1.20 15 1 1.21 1 15 1.55
16 1 16 1.16 2 8 1.06 1 16 1.51
17 17 1 1.21 NA 1 17 1.49
18 2 9 1.18 3 6 1.18 1 18 1.46
19 19 1 1.27 NA I 19 1.43
20 2 10 1.13 4 5 1.19 1 20 1.39
21 21 1 1.23 3 7 1.10 1 21 1.37
22 2 11 1.07 NA 1 22 1.37
23 23 1 1.18 NA 1 23 1.37
24 2 12 1.04 3 8 1.00 1 24 1.36
25 25 1 1.15 NA 1 25 1.36
26 2 13 0.98 NA 1 26 1.28
27 27 1 1.11 NA 1 27 1.33
28 2 14 0.97 4 7 0.99 1 28 1.34
29 29 1 1.10 NA 1 29 1.30
30 2 15 0.93 NA 1 30 1.29
31 31 1 1.10 NA 1 31 1.29
32 2 16 0.90 4 8 0.90 2 16 1.31

Table 5.B. Execution times as a function of P for experimentally determined optimal blends
on the HP SPP-2000, IBM SP3, and SGI Origin 2000 in the case m = 1500 and n = 1500.

In conclusion, high levels of performance can be extracted from three ma­
chines in a variety of parallel programming environments and on a variety
of problems. The algorithm outperforms all competing parallel QR factoriza­
tion algorithms installed on the SOl Origin 2000 and on the HP SPP-2000.
None of the machines delivers consistently superior performance for all matrix
dimensions considered in this book. No single parallel programming environ­
ment emerges as a clear choice for high performance on the SGI or the HP.

www.manaraa.com

70 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

HP IBM SGI
p M S Time (s) M S Time (s) M S Time (s)
I I I 2.05 I I 1.15 I I 1.49
2 2 I 1.15 2 I 0.65 I 2 0.89
3 1 3 0.80 3 1 0.48 1 3 0.67
4 1 4 0.61 4 1 0.40 1 4 0.57
5 1 5 0.51 5 1 0.36 1 5 0.52
6 1 6 0.44 6 1 0.34 6 I 0.46
7 I 7 0.40 7 1 0.31 1 7 0.44
8 1 8 0.36 8 1 0.29 1 8 0.41
9 1 9 0.33 9 1 0.30 1 9 0.41

10 I 10 0.32 10 1 0.29 1 10 0.40
11 1 11 0.31 11 1 0.28 1 11 0.40
12 I 12 0.29 12 1 0.27 I 12 0.37
13 1 13 0.28 13 1 0.28 1 13 0.37
14 I 14 0.26 2 7 0.28 1 14 0.35
15 1 15 0.26 15 1 0.27 1 15 0.34
16 I 16 0.26 2 8 0.26 1 16 0.35
17 17 1 0.27 NA 1 17 0.35
18 2 9 0.27 3 6 0.28 1 18 0.33
19 19 1 0.32 NA 1 19 0.33
20 2 10 0.26 4 5 0.28 1 20 0.33
21 21 1 0.33 3 7 0.27 1 21 0.34
22 2 11 0.26 NA 1 22 0.32
23 23 I 0.34 NA 1 23 0.32
24 2 12 0.25 3 8 0.26 1 24 0.31
25 1 25 0.34 NA 1 25 0.31
26 2 13 0.24 NA 1 26 0.31
27 3 9 0.28 NA 1 27 0.32
28 2 14 0.23 4 7 0.29 1 28 0.32
29 1 29 0.31 NA 1 29 0.31
30 2 15 0.21 NA 1 30 0.32
31 1 31 0.29 NA 1 31 0.32
32 2 16 0.21 4 8 0.27 1 32 0.32

Table 5.9. Execution times as a function of P for experimentally determined optimal blends
on the HP SPP-2000, IBM SP3, and SGI Origin 2000 in the case m = 1500 and n = 500.

The hybrid shared memory/message passing programming model shows the
most promise and is necessary to fully utilize the IBM SP3.

www.manaraa.com

Parallel Fast Givens QR Factorization 71

HP IBM SGI
p M S Time (s) M S Time (s) M S Time (s)
1 1 1 0.496 1 1 0.280 1 1 0.363
2 I 2 0.280 2 1 0.172 2 I 0.246
3 I 3 0.205 3 I 0.142 3 I 0.214
4 1 4 0.169 4 I 0.121 2 2 0.184
5 1 5 0.144 5 1 0.116 5 1 0.177
6 1 6 0.128 6 1 0.111 2 3 0.163
7 1 7 0.120 7 1 0.108 7 I 0.158
8 I 8 0.112 I 8 0.102 8 I 0.154
9 1 9 0.105 9 1 0.109 I 9 0.153

10 I 10 0.100 2 5 0.099 1 10 0.149
11 I 11 0.098 11 1 0.099 1 11 0.144
12 1 12 0.097 2 6 0.097 I 12 0.140
13 I 13 0.095 13 I 0.099 I 13 0.139
14 I 14 0.093 2 7 0.095 14 1 0.141
IS I 15 0.091 IS 1 0.099 IS I 0.137
16 1 16 0.089 2 8 0.088 1 16 0.138
17 I 17 0.088 NA I 17 0.134
18 2 9 0.093 3 6 0.098 I 18 0.132
19 I 19 0.104 NA I 19 0.128
20 2 10 0.090 4 5 0.101 1 20 0.127
21 1 21 0.108 3 7 0.095 I 21 0.125
22 2 11 0.088 NA I 22 0.129
23 23 1 0.107 NA 1 23 0.129
24 2 12 0.088 3 8 0.089 I 24 0.128
25 25 I 0.114 NA I 25 0.127
26 2 13 0.086 NA 1 26 0.131
27 3 9 0.099 NA 1 27 0.132
28 2 14 0.087 4 7 0.096 1 28 0.127
29 1 29 0.116 NA 1 29 0.126
30 2 15 0.087 NA 1 30 0.128
31 I 31 0.116 NA 1 31 0.129
32 2 16 0.088 4 8 0.090 I 32 0.140

Table 5.10. Execution times as a function of P for experimentally determined optimal blends
on the HP SPP-20OO, IBM SP3, and SGI Origin 2000 in the case m = 500 and n = 500.

www.manaraa.com

72 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

HP m = 3000 m = 1500 m = 1500 m=500
p M S n = 1500 n = 1500 n = 500 n = 500

1 6 6.26 2.54 0.443 0.443
2 3 6.37 2.68 0.471 0.471
3 2 7.27 2.89 0.543 0.543
6 1 6.68 2.72 0.495 0.495
1 12 3.41 1.42 0.292 0.292
2 6 3.47 1.55 0.312 0.312
3 4 4.19 1.78 0.394 0.394
4 3 4.59 2.11 0.419 0.419
6 2 4.28 1.81 0.476 0.476

12 1 3.73 1.58 0.359 0.359
1 24 3.74 1.60 0.354 0.354
2 12 2.07 1.04 0.247 0.247
3 8 2.65 1.24 0.331 0.331
4 6 3.06 1.57 0.340 0.340
6 4 2.64 1.24 0.318 0.318
8 3 94.81 1.38 0.416 0.416

12 2 375.35 1.38 0.484 0.484
24 1 2.32 1.17 0.348 0.348

Table 5.11. Execution times in seconds for various blends on the HP SPP-2000.

IBM Tn = 3000 m = 1500 m = 1500 m=500
p M S n = 1500 n = 1500 n= 500 n = 500

I 6 4.60 1.90 0.416 0.416
2 3 4.72 2.11 0.389 0.389
3 2 4.77 2.25 0.430 0.430
6 1 4.09 1.85 0.337 0.337
1 12 NA
2 6 2.91 1.36 0.296 0.296
3 4 3.07 1.47 0.320 0.320
4 3 3.20 1.55 0.351 0.351
6 2 11.08 5.59 1.67 1.669

12 I 2.68 1.33 0.275 0.275
1 24 NA
2 12 NA
3 8 2.12 0.996 0.257 0.257

4 6 2.26 1.11 0.288 0.288
6 4 6.32 1.37 0.366 0.366
8 3 17.40 1.29 0.376 0.376

12 2 7.23 1.51 0.830 0.830
24 1 NA

Table 5.12. Execution times in seconds for various blends on the IBM SP3.

www.manaraa.com

Parallel Fast Givens QR Factorization 73

SGI m = 3000 m = 1500 m = 1500 m=500
p M S n = 1500 n = 1500 n = 500 n = 500

1 6 5.34 2.45 0.476 0.476
2 3 5.44 2.53 0.484 0.484
3 2 13.18 5.87 0.678 0.678
6 1 5.68 2.88 0.459 0.459
1 12 3.45 1.75 0.374 0.374
2 6 3.56 1.85 0.408 0.408
3 4 9.05 3.97 0.575 0.575
4 3 5.29 2.72 0.771 0.771
6 2 5.93 3.20 0.996 0.996

12 1 3.61 1.86 0.387 0.387
1 24 2.54 1.36 0.314 0.314
2 12 2.72 1.43 0.353 0.353
3 8 6.64 3.38 1.410 1.413
4 6 4.36 2.35 0.589 0.589
6 4 4.86 2.78 0.985 0.985
8 3 5.32 3.00 1.190 1.194

12 2 4.06 2.09 0.902 0.902
24 1 3.18 1.61 0.438 0.438

Table 5.13. Execution times in seconds for various blends on the SGI Origin 2000.

www.manaraa.com

Chapter 6

CASE STUDY 2: PARALLEL COMPACT
WY QR FACTORIZATION

During the past five years the widespread availability of tuned kernels for
performing matrix-matrix multiplication has dramatically narrowed the focus
of parallel algorithm research in the field of linear algebra. Underlying this
change is the fact that an efficient subroutine can exploit properties of the
processor superscalar design and memory hierarchies to compute a matrix­
matrix multiplication faster than a subroutine can sequentially compute the
component matrix-vector multiplications. Indeed, studies have shown that
substantial gains in performance can be realized by redesigning linear alge­
bra algorithms to increase the percentage of operations performed as matrix­
matrix multiplication (Bischof et aI., 1994; Dongarra et aI., 1989; Gallivan
et aI., 1988; Schreiber and Van Loan, 1989). This is evidenced on the SOl
POWER Challenge where LAPACK reports an efficiency of 268 Mflops when
multiplying two 1000 x 1000 matrices, but only 41 Mflops when multiplying
a 1000 x 1000 matrix and a 1000 element vector (Anderson et aI., 1995).
A potential six-fold increase in performance is strong impetus for developing
algorithms whose computations can be expressed in terms of matrix-matrix
multiplication instead of matrix-vector multiplication. Solution procedures
whose component computations cannot be cast in terms of matrix-matrix mul­
tiplication are no longer the focus of much research.

Although parallel QR factorization is an important research topic , only a
handful of parallel algorithms have been designed to employ matrix-matrix
multiplication in the last 25 years. These algorithms partition the underly­
ing matrix data into two-dimensional blocks and distribute these blocks in a
cyclical fashion to P processors. Block computations proceed concurrently
with little need for communication or synchronization, and the computations
are dominated by matrix-matrix multiplication. Unfortunately the data dis­
tribution schemes associated with these algorithms, such as ScaLAPACK's

75

www.manaraa.com

76 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

PDGEQRF (Blackford et aI., 1997; Choi et aI., 1995), are not always com­
patible with the data movement patterns of software applications. For high
performance signal processing applications where strict latency constraints
prohibit repartitioning and redistributing the data to accommodate a particu­
lar distribution pattern, the mismatch can degrade performance. The cost of
repartitioning and redistributing the data is usually proportional to the number
of processors and has the effect of hindering overall scalability. Where mis­
matches occur, these algorithms afford the end user little flexibility to meet
hard latency constraints by manipulating the number of processors. Note
that some very recent work on efficient real time redistribution techniques
promises to make these algorithms more attractive to embedded applications
(Park et aI., 1999; Petit and Dongarra, 1999).

Anything short of incorporating real-time redistribution techniques into
these algorithms, however, places an unacceptable burden on the algorithm
designer. This is particularly true when the design process begins with a se­
quential specification. By profiling an implementation of the sequential speci­
fication on the target architecture, bottlenecks can be identified and evaluated
as possible candidates for parallel execution. Parallel algorithms based on
two-dimensional block cyclic distribution schemes hinder the ability of the
algorithm designer to rapidly prototype solutions to these bottlenecks. Cus­
tom scatter/gather operations are necessary to integrate these algorithms into a
sequential test bed. These operations may become new bottlenecks and may
require extensive tuning. Ideally, designers want to deploy algorithms that
closely match the data movement pattern of the existing application.

This chapter describes the design, implementation, and performance of a
new parallel algorithm for computing the factorization A = Q R that is well
suited to applications where block cyclic data distribution schemes degrade
performance. The algorithm applies Householder reflections in block fashion
to reduce a real m x n matrix A to upper triangular form where m 2::: n. Us­
ing the "Compact WY" representation developed by Schreiber and Van Loan
(1989), blocks of Householder reflections are aggregated so as to use matrix­
matrix multiplication. User-defined parameters h, w, and 61,62, ... ,8P-1
control the aggregation of Householder reflections, the composition of two
types of indivisible computational primitives or tasks, and the assignment of
tasks to processors for concurrent execution. In contrast to existing paral­
lel QR factorization algorithms that employ matrix-matrix multiplication, the
multiprocessor partitioning strategy is not governed by an underlying static
data distribution scheme. Tasks and their dependency relationships define a
task dependency graph, and the parameters wand Ih,62, ... ,8p-l partition
the graph into P < (n + 1/2)jh non-overlapping regions of tasks. Within a
region, processors execute tasks and exchange messages asynchronously. The
initial and final data resides on the same processor.

www.manaraa.com

Parallel Compact WY QR Factorization 77

1. Parallel Compact WY Algorithm
This section presents the Parallel Compact WY (PCWY) algorithm. Su­

perscalar and memory hierarchy parameterizations are discussed in Section
1.1 . In Section 1.2, the multiprocessor parameters wand 01 , 02 , ... ,0 P-I are
introduced.

1.1 Superscalar and Memory Hierarchy
Parameterization

2

3

4

5

6

7

8

9

10

II

12

2) 4 5 6 7 8 ') 10 11 12
j

Figure 6.1 . Task dependency graph for the case h = 2, m ::::: n, and n = 24.

In the SCWY algorithm, the parameter h controls the aggregation of House­
holder reflections, and therefore the relative amount of computations per­
formed as matrix-matrix multiplication. In contrast to the superscalar and
memory hierarchy parameters presented in Chapter 5, the parameter h does
not explicitly control reuse in the registers or the caches. However, tuned
matrix-matrix multiplication kernels are generally register and cache efficient.
However, kernel efficiency does depends on the dimensions of the matrices

www.manaraa.com

78 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

and in particular, on the smallest dimension. For the SCWY algorithm, the
smallest dimension is the parameter h.

For the PCWY algorithm, the matrix multiplication operations involved
in applying the aggregated Householder reflections to Ak are divided into
column segments of width h and denoted by the symbol Bi,j, hereafter referred
to as a subordinate task where j = i + 1, i + 2, ... , n, i = (k - l)/h + 1,
and n = r n/ h 1- Both the inner and outer-right dimensions of the matrix
multiplication operations involved in applying the aggregated reflections are
now equal to h. While this can have the effect of reducing kernel efficiency,
the following subordinate tasks

Bi,i+1, Bi,i+2, ..• ,Bi,n

are independent and can be distributed to multiple processors for concurrent
execution.

Before introducing the partitioning and sequencing strategy, the computa­
tions that comprise a leading task and the dependency relationships among
tasks are described. Leading task Ii is comprised of the computations nec­
essary to factor the submatrix Atm,k:n and determine yk and Tk where
it = min(k + h - 1, n). From the underlying dependencies among computa­
tions, li depends on Bi-1,j, and Bi,j depends on li and Bi-l,j. For the case
h = 2 and m ~ n, and n = 24, the corresponding task dependency graph is
shown in Figure 6.1 where each shaded circle represents a task Ii and each
shaded square represents a task Bi,j.

1.2 Multiprocessor Parameterization
Using the task dependency graph as a geometric representation of the com­

putational work involved in factoring the matrix A, the parameters wand
81 ,82, ... ,8p - 1 control a load balancing algorithm that partitions the graph
into P diagonal bands of roughly equal area. The diagonal bands are bounded
by P -1 diagonal lines with slope mp. y-intercept bp, and x-intercept (xp -1)
and P unity slope diagonal lines with y-intercept b~. The line equations are
as follows:

y = mpx+bp

y = x+ b~.

The parameter w > 1 is the spacing in the x direction between the P unity
slope diagonal lines. The parameters 81,82, ... , 8p-1 are twiddle factors that
adjust the relative amount of area contained in each band. The following
algorithm computes the line parameters:

www.manaraa.com

Parallel Compact WY QR Factorization

Algorithm: LB (Load Balancing)

Input(n, P, w, h)

n = rn/hl.
a = (n + 1/2 - wP)2/2

P = min(P, Wi + w - 1/2)/wJ)

For p = 1 to P - 1

If p = 1 then a = (h a

Else

a = rp + (1 + op)/(P - p + 1)
a = (1- (1 +op)/(P - p+ 1))a

End For

xp = (1 + VI + 8a)/2

mp=xp

bp = -mp(xp + pw - 1)

b~ = -pw

rp = x~(xp - 1)/2
xp = xp+pw

End For

b'p = -Pw

79

If the Cartesian coordinates (x,y) of task li and Si,; are (j,j -1/2) and
(j, i - 1/2) respectively. then the following algorithm returns TRUE if task
li or Si,; is assigned to processor p where M = {ml' m2, ... , mp-I}, B =
{b1 , b2 , ••• ,bp-d. and B' = {bi, b2, ... ,b'p}:

Algorithm: TP (Task Partitioning)

Input(x, Y,P, M, B, B')

If x < y then Output(TRUE)

Else If y < 0 then Output(TRUE)

Else If p = 1 and min(mpx + bp, x + b~) ~ y then Output(TRUE)

Else If 1 < p < NP and min(mpx + bp,x + b~) ::::;: y < min(mp_Ix +
bp-l, x + b~_l) then Output(TRUE)

www.manaraa.com

80 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Else If y < min(mp_lX + bp-l,X + b~-l) then Output(TRUE)

Output(FALSE)

The sequencing strategy is straightforward. Processor 1 executes tasks first
from top to bottom and then from left to right. Processors 2,3, ... ,P execute
tasks first from left to right and then from top to bottom. For processor
1, the idea is to rapidly compute and distribute the aggregated reflections
(I + ykSkyk T) for k = 1, h+ 1, 2h+ 1, . .. , (11 -1)h+ 1. For the remaining
processors, the idea is to execute tasks in such an order as to delay the need
for each set of aggregated reflections as long as possible. Figures 6.2 and 6.3
depict the partitioning and sequencing strategy. The task numbering depicts
not only the sequencing strategy, but also simulated execution times. The
times are based on the assumption that it takes one second to execute any
leading or subordinate task and one second to traverse a communication link
between neighboring processors in the array.

o 2 3 4 5 6 7 8 9 IO I I 1 2
o x

2

3

4

5

6

7

8

9

10

I I

12
y

(~

(3)

(6) 19
"

(I.?) L '

Figure 6.2. Partitioning and sequencing strategy parameterized by wand (h, 62 , .. . ,6P_I
for the case m ?': n, n = 24, h = 2, W = 2, 81 = 2.1, 82 = 0.0, P = 3 ml = 6.0,
m2 = 6.5, bl = -41.5, b2 = -62.0, b~ = -2, b2 = -4, and ba = -6,

www.manaraa.com

Parallel Compact WY QR Factorization

o 2 3 4 5 6 7 8 9 10 II 12
o x

2

3

4

5

6

7

8

9

10

II

12
y

81

Figure 6.3. Partitioning and sequencing strategy parameterized by wand (h, 152 , ... ,bp _ I

for the case m 2: n = 24, h = 2, w = 2, 151 = 0.0, 152 = 0.0, P = 3 1n1 = 4.3, 1n2 = 5.8,
bl = -23, b2 = -51, b; = -2, b~ = -4, and b~ = -6.

The LB and TP algorithms together partition the task dependency graph
into P regions. To satisfy data dependencies among tasks, a communication
strategy is devised for multiprocessor execution. Along those lines, the fol­
lowing two procedures manage the asynchronous send and receive operations
for the Parameterized Parallel Compact WY algorithm. The first procedure
manages those send and receive operations that precede the execution of some
tasks, and the second procedure manages those send operations that must take
place after the execution of some tasks.

Procedure: ARC (Asynchronous Receive/Send Communication)

Step 1: If TP(j, i - 3/2, p, M, B, B') =FALSE then wait to receive columns
[(j - l)h + 1 : min(jh, n)] from p + 1

Step 2: If p = 1 then go to Step 6; else continue

Step 3: IfTP(j-l, i-l/2,p, M, B, B') =TRUE go to Step 6; else continue

www.manaraa.com

82 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Step 4: Wait to receive yk and Sk from p - I where k = (i - I)h + I
Step 5: Send yk and Sk to p + I where k = (i - I)h + I
Step 6: Stop

Procedure: ASC (Asynchronous Send Communication)

Step 1: IfTP(j -I,i -1/2,p,M,B,B') = FALSE then send yk and Sk
to p + I where k = (i - l)h + I

Step 2: IfTP(j,i+I/2,p,M,B,B') =FALSE andp > 1 then send columns
[(j - l)h + 1 : min(jh, n)] to p - I

With the asynchronous communication procedures defined, the Parame­
terized Parallel Compact WY algorithm is straightforward. The algorithm is
presented below where the input parameter pEl, 2, ... , P is a unique integer
identifying the current processor.

Algorithm: PCWY (Parameterized Parallel Compact WY)

[nput(p, A, h, w, 8t. 8, ... ,8p-d

[m, n] = dimensions(A)

n = fn/hl
Compute M, B', and B" using the LB Procedure

If p = 1 then

Distribute A to processors 2,3, ... , P

For j = 1 to n
For i = I to j

IfTP(j,i-l/2,M,B,B') = TRUE then
Communicate using the ARC Procedure

If i = j then execute task li

Else execute task Si,j

Communicate using the ASC Procedure
End If

End For

End For

Else

For i = 1 to n

www.manaraa.com

Parallel Compact WY QR Factorization

For j = i + 1 to n
If TP(j, i - 1/2, M, B, B') = TRUE then

Communicate using the ARC Procedure

Execute task Si,j

Communicate using the ASC Procedure
End If

End For

End For

Output(A)

2. Related Work

83

Only a handful of authors have proposed parallel orthogonalization algo-
rithms based on the Compact WY algorithm, and they include

Choi et aI., 1995

Choi et aI., 1995

Baker et aI., 1998

The algorithm developed by Choi et al. is at the heart of ScaLAPACK's
PDGEQRF algorithm, and the experimental results in Section 3 compare the
performance characteristics of the PCWY and PDGEQRF algorithms. Baker
et al. modified the PDGEQRF algorithm and showed improved performance
for matrix dimensions greater than 5000. In this chapter, m and n are re­
stricted to values less than 3000.

3. Experimental Results
Experimental results are presented for the PCWY algorithm in this section.

The results compare the execution times of the PCWY for various values of
m and n on a 64-processor HP SPP-2000 and on a 128-processor SOl Origin
2000. The sensitivity of these results to variations in parameter settings is
also explored.

For comparison purposes, the results include the execution times of two
competing parallel algorithms: a shared memory versions of LAPACK's
DGEQRF algorithm for the HP and ScaLAPACK's PDGEQRF for the SGI.
Both algorithms require a user-specified parameter LWORK, and the rec­
ommended value was used. For PDGEQRF, the values of four additional
parameters that minimize execution time are determined experimentally. The
parameters are the number of Pr rows and Pe columns in the process grid
and blocking factors br and be for controlling block cyclic distribution.

www.manaraa.com

84 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

m = 3000 m = 1500 m = 1500 m=500 m=500

n = 1500 n = 1500 n = 500 n= 500 n= 100

PCWY 2.99 1.10 0.416 0.100 0.0180 HP Non·block.U1g Mra

SPP-2000 DGEQRF 3.90 1.19 0.570 0.212 0.0426
Sh.ued Memory

PCWY 2.46 1.32 0.396 0.119 0.0180 SGI Non-blc.:k.ing MPI

Origin 2000 PDGEQRF 4.11 2.89 0.728 0.260 0.0420
BLACS

Table 6.1. Execution times in seconds for h = h', W = 2, <h = 0, 'h = 03 = ... =
Op'-l = 0.86, and P = P* where h* and P* are given in Table 6.2.

Because the data distribution schemes employed by PCWY and PDGEQRF
are vastly different, the reported execution times for both algorithms include
the cost of distributing the matrix A from processor one to the other P - 1
processors. For PCWY, this includes the time for processor one to distribute
the requisite columns of the matrix A to processors 2,3, ... ,P. The linear
array is assumed to have no broadcasting facilities. No such restriction is
placed on PDGEQRF. The execution time for PDGEQRF includes the time
to broadcast the matrix A from processor one to the other processors and
the time to pack the data on the local processor for two-dimensional block
cyclic execution. Even though the upper triangular result is stored entirely
on processor one for PCWY and is distributed across P processors in packed
format for PDGEQRF, the costs associated with distributing or gathering the
final result for PCWY or PDGEQRF is not included. The true nature of this
cost would depend on the processing to follow.

The number of combinations of the parameters that satisfy the constraints
1 ::; h ::; n, 1 ::; hw ::; n, and 0 ::; Oi ::; P for i = 1,2, ... ,P - 1 is infinite
and devising an efficient procedure for determining near optimal combinations
is beyond the scope of this book. Nonetheless, some definitive patterns have
emerged in the results that can guide the end user in selecting combinations
that produce high levels of performance. These patterns are discussed in the
following paragraphs.

Table 6.1 presents the execution times of the PCWY algorithm, DGEQRF,
and PDGEQRF. For experimentally determined optimal h (h*) and P (P*),
and for constant wand 01,02, . .. ,Op*-b PCWY outperforms the competing
algorithms for all values of m and n on both the HP and the SGI. For

www.manaraa.com

Parallel Compact WY QR Factorization 85

m = 3000 m = 1500 m = 1500 m = 500 m = 500

n = 1500 n = 1500 n = 500 n = 500 n = 100

HP P* 53 53 12 11 4
SPP·20C10 h* 8 8 10 22 to

SGI P* 62 66 12 12 4
Origin 2000 h* 8 6 12 16 4

Table 6.2. Experimentally determined optimal values of hand P for 'Ill = 2, 81 = 0, and
82 = 83 = ... = 8p*_1 = 0.86.

500 ~ m ~ n, PCWY outperforms competing algorithms by a wide margin.
The margin narrows for larger problems and is essentially negligible on the
HP for m = n = 1500. Chapter 5 showed that shared memory outperforms
message passing on the HP for P ::; 16 and that m = n = 1500 is small
enough of a problem to make the benefits of using more than 16 processors
either in message passing or shared memory marginal. The corresponding
parameter settings for PCWY on the HP and SGI are presented in Table 6.2.

m = 3000 m = 1500 m = 1500 m= 500 m= 500
n = 1500 n = 1500 n = 500 n = 500 n = 100

HP 2.99 UO 0.457 0.136 0.0196
SPP-2000

SGI 2.46 1.38 0.422 0.144 0.0194
OH~in 2000

Table 6.3. Execution times for h = 8, 'Ill = 2, 81 = 0.0, 82 = 83 = ... = 8p* -1 = 0.86,
and P = P' where P' is taken from Table 6.2.

The parameter h controls the aggregation of Householder reflections and
the composition of two types of tasks. By adjusting the parameter, the end
user can manipulate the performance tradeoff between finding enough fine­
grain parallelism to keep the matrix-matrix multiplication kernels operating at
peak efficiency and finding enough coarse-grain parallelism to evenly balance
the load among P processors. To a lesser extent, multiprocessor parameters w
and 81. 82 , .•. ,8p-1 affect this tradeoff by adjusting the partitioning strategy
and therefore the load imbalance among P processors. The discussion of the
sensitivity to variations in parameter settings is limited to the parameters h
and P. As it turns out constant w = 2, 01 = 0.0, and 02 = ... = Op-1 =

www.manaraa.com

86 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

m = 3000 m = 1500 m = 1500 m=500 m=500

n = 1500 n = 1500 n = 500 n= 500 n = 100

HP 3.31 1.69 0.465 0.188 0.0234
SPP·2000

SGI 2.58 NA 0.396 0.127 0.0231
Ori~in 2000

Table 6.4. Execution times for h = 12, W = 2, <h = 0.0, 152 =,h = ... = t5P '- 1 = 0.86,
and P = P' where P' is taken from Table 6.2.

0.86 achieves near optimal results for all m and n. Despite the fact that no
quantitative model to characterize the performance tradeoff controlled by h
and P exists, a handful of qualitative observations are gleaned to guide the
end user in choosing a parameter combination that produces high levels of
performance.

m = 3000 m = 1500 m = 1500 m=500 m=500
p n = 1500 n = 1500 n= 500 n = 500 n= 100

1 43.30 17.30 2.70 0.630 0.0426

HP
2 35.13 12.10 1.66 0.374 0.0247

4 22.56 7.45 0.979 0.225 0.0196
spp·;!(XX} 8 13.46 4.29 0.568 0.161 NA

16 8.15 2.56 0.563 0.148 NA
32 4.46 1.47 0.479 0.141 NA

1 41.70 12.7 1.81 0.377 0.0440

2 18.54 7.17 1.09 0.286 0.0210

SGI
4 10.98 4.43 0.714 0.193 0.0194

8 8.05 2.66 0.499 0.148 NA
Origin 2{XX) 16 4.65 1.82 0.405 0.141 NA

32 3.42 1.49 0.438 0.162 NA
64 2.95 1.44 NA NA NA

Table 6.5. Execution times as a function P for h = 8, W = 2, 151 = 0.0, 152 = 153 = ... =
8p = 0.86 where h* is the experimentally determined optimal value of the parameter h for
each experiment.

www.manaraa.com

Parallel Compact WY QR Factorization 87

From Tables 6.1, 6.3, and 6.4, the parameter setting h = 8 obtains near
optimal performance for all values of m and n, constant values of w and
81. 82 , ..• ,8p-l, and P = P*. The fact that execution times associated with
h = 12 are as much as 50% slower in some cases than the execution times
associated with h = 8 leads us to conclude that the benefits of reducing load
imbalance outweigh the benefits of improving matrix-matrix multiplication
kernel efficiency. Given the importance of load imbalance on selecting optimal
values of h, it is not surprising that PCWY performance is sensitive to P as
shown in Table 6.5. The parameters hand w provide the following upper
bound on P:

P ~ minCP, lCrn/hl + w -1/2)/wJ).

Unfortunately using as many processors as possible does not necessarily result
in the lowest execution time, as is the case for the SGI when m = n =
500. In practice, the optimal number of processors should be determined
experimentally for h = 8, w = 2, ch = 0, and 82 = 03 = ... = Op-l = 0.86.
If execution time is absolutely critical, as is often the case when using parallel
computers, optimal values of other parameters should also be determined
experimentally to obtain peak performance.

www.manaraa.com

Chapter 7

CASE STUDY 3: PARALLEL
MATRIX BIDIAGONALIZATION

Bidiagonal factorization is the first step in solution procedures for com­
puting the singular values of a matrix A E nmxn (Demmel and Kahan,
1990; Golub and Van Loan, 1989). The factorization is defined as

B=UTAV (7.1)

where BE n mxn, with Bi,j = 0 for i > j and i < j + 1, and U E nmxm

and V E nnxn are orthogonal matrices and only computed if the left and right
eigenvectors are needed. Bidiagonalization typically dominates the execution
time. For instance, to compute the singular values of a 1000 x 1000 matrix
using LAPACK on a single processor of an HP V2500 requires 17.2 seconds.
Of these, 15.5 seconds are spent computing the bidiagonal factorization.

This chapter discusses the design, implementation, and performance of a
parameterized, parallel, two-Phase bidiagonalization algorithm that first re­
duces a dense matrix to an upper triangular matrix with h superdiagonals and
then reduces this banded matrix to bidiagonal form. The user-defined blocking
parameter h controls the aggregation of Householder transformations. Aggre­
gated transformations are applied in block fashion using the Compact WY
representation. This representation permits the use of matrix multiplication in
the block application of Householder transformations and obviates the need
for explicit superscalar and memory hierarchy parameterizations if vendor­
tuned matrix multiplication kernels are available. If tuned kernels are not
available, then the parameterization procedures described in Chapter 3 can
be applied to the algorithm design process. Phase 2 selectively annihilates
elements of the upper triangular matrix using Givens rotations to produce the
final bidiagonal form.

The motivation for designing algorithms to exploit tuned matrix multipli­
cation kernels stems from the observation that an efficient subroutine can

89

www.manaraa.com

90 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

exploit properties of the memory hierarchies and processor superscalar de­
sign to compute a matrix-matrix multiplication faster than it can sequentially
compute the component matrix-vector multiplications (Bischof and Van Loan,
1987; Dongarra et al., 1990; Gallivan et al., 1988). This is evidenced on the
SGI POWER Challenge, where LAPACK reports an efficiency of 268 Mflops
when multiplying two 1000 x 1000 matrices, but only 41 Mflops when mul­
tiplying a 1000 x 1000 matrix and a 1000 element vector (Anderson et al.,
1995).

1. Parallel Matrix Bidiagonalization Algorithm
Aggregating Householder transformations is a well-known technique for

introducing matrix-matrix multiplication (Bischof and Van Loan, 1987; Don­
garra et al., 1989). However, in the case of the SHB algorithm, Householder
vectors on the left Uk and on the right Uk+ 1 cannot be aggregated because the
vector Vk, that depends on Uk, must be computed and applied before uk+1

can be computed. The following two-Phase parallel matrix bidiagonalization
(PMB) algorithm circumvents this dependency constraint. The first Phase
uses a technique developed by Bischof et al. (1994) to reduce A to a matrix
C with upper bandwidth h (that is, a matrix with h superdiagonals) satisfying

(7.2)

where Ci,j = 0 for i > j and i < j + h, and U1 and Vi are orthogonal
matrices. The second Phase applies Givens rotations from the left and the
right reduce C to

where Bi,j = 0 for i > j and i < j + 1, and U2 and V2 are orthogonal.

1.1 Superscalar and Memory Hierarchy
Parameterization

(7.3)

In the SCWY algorithm, the parameter h controls the aggregation of House­
holder reflections. As the basis for the PMB algorithm, the SCWY algorithm
obviates the need for explicit superscalar and memory hierarchy parameteri­
zations. Beginning with Co = A, the aggregated reflections are applied using
the Compact WY representation to compute

(7.4)

and
(7.5)

for k = 0, h, 2h, ... , I where I is the largest multiple of h that is less than
n. The matrices yk E R'Ttxh and i'k E n hxh are determined from Ck

www.manaraa.com

Pamllel Matrix Bidiagonalization 91

such that columns k to k + q - 1 of C* k+h are zero below the diagonal
where m = m - k and q = min(h, n - k). The matrices yk E nhxn and
tk E nhxh are determined from C* k+h such that rows k to k + r - 1 of
Ck+h are zero to the right of the hth superdiagonal where ii = n - k - hand
r = min(h, m - k). The matrix yk is a collection of Householder column
vectors whose leading k - 1 elements are equal to zero. Similarly, yk is a
collection of Householder row vectors. Section 2.2 provides a procedure for
determining i'k and yk; the computation of tk and yk is a straightforward
extension of this procedure.

Tuned matrix-matrix multiplication kernels are generally register and cache
efficient. However, the efficiency depends on the dimensions of the matrices.
For Eqs. 7.4 and 7.5, the efficiency of the matrix multiplication operations
depends on m - k, n - k, and h.

1.2 Multiprocessor Parameterization
For multiprocessor execution, the matrix multiplication operations in Eqs.

7.4 and 7.5 are divided into two sets of P independent operations. Specifically,
processor p computes columns np through np + n - 1 of C* k+q for p =
1,2, ... , P where np = k + h + 1 + (p - l)n and n = f(n - k - h)/ Pl
Likewise, processor p computes rows mp through mp + m - 1 of Ck+p for
p = 1,2, ... ,P where mp = k+h+l+(p-l)m and m = f(m-k-h)/Pl

A formal description of Phase 1 is given below, where it is assumed that A
is an m x n element array that initially stores the matrix A, and subsequently
stores the current iterate C* k+p or Ck+p.

Algorithm: Phase 1 of the Parallel Matrix Bidiagonalization (PMBl)

Input(A, h)

[m, n]=dimensions(A)

C=A

in = min(m -l,n)

For k = 1 to in by h

n = min(k + h - l, in)

np = f(n - k - h + 2)/ Pl
Compute [Vk' Vk+1,"" vn] using the SH algorithm to factor Ck:m,k:n

Compute Y and i' using the CWY algorithm

DO IN PARALLEL

www.manaraa.com

92 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

For p = 1 to P

n! = k + h + (p - 1)np - 1 and nr = min(n, nl + np - 1)
* k+h _ (A AT A T) k

Ck:m,n/:nr - 1+ YT Y Ck:m,n/:nr

End For

If (k + h - n + 1 2: 0) then

m = min(k + 2h - 1, n - 1)

mp = r(m-k-h)/Pl
Compute [Uk, Uk+1,"" urnl using the SH algorithm to factor
Ck:rn,k+h:n

Compute Y and 'i' using the CWY algorithm

DO IN PARALLEL

For p = 1 to P
ml = k+h+(p-l)mp-l and mr = min(n,ml+mp -1)

k+h * k+h (- - T - T)
Cm/:mr,k+h:n = Cm/:mr,k+h:n 1+ YT Y

End For

End If

End For

Output(Ck)

To reduce the banded matrix C to bidiagonal form, a sequence of Givens
column and row rotations is applied to introduce zeros above the superdiagonal
of C. The number of rotations required to zero the (i,j)th element of C
decreases as the bandwidth of the submatrix that lies in rows j - 1 to m and
columns j - 1 to n of C increases. At the completion of Phase 1, the matrix
C has a bandwidth of h. To preserve this bandwidth for arbitrary values of
i and j, zeros are introduced from right to left and then from top to bottom.
More formally, given m, n, h and an h-band matrix stored in an m x n
element array C, Phase 2 is described below:

Algorithm: Phase 2 of the Parallel Matrix Bidiagonalization (PMB2)

Input(C, h)

[m, n] =dimensions(C)

B=C

For i = 1 to n

www.manaraa.com

Parallel Matrix Bidiagonalization

For j = min(i + h, n) to i + 2 by -1

Apply a sequence of Givens rotations to annihilate element Bi,j

End For

End For

Output(B)

93

An example of the behavior of the PMB algorithm in the case m = 10,
n = 9, and h = 3 is given in Figures 7.1, 7.2, and 7.3. Figure 7.1 shows
the order in which blocks of zeros are introduced in Phase 1. In Phase 2,
zeros are created above the superdiagonal in the order shown in Figure 7.2
by applying an alternating sequence of Givens column and row rotations.
Figure 7.3 contains the sequence of rotations necessary to introduce the fifth
zero in Phase 2, where the boxes contain the array elements modified by the
row and column rotations. The elements designated with a circled plus sign
show locations where the rotations "fill in" an element, which is initially zero.
Subsequent rotations then remove this fill. By completely reducing row i to
bidiagonal form before beginning row i + 1, the "bandwidth" of the updates
is maintained, minimizing the number of columns which are twice modified
in the course of introducing each zero.

The number of operations required by the PMB algorithm depends on
h. Phase one requires 4n2 (m - n/3) - hn (m + n + 8h/3) flops, of which
half are multiplications and half are additions. For Phase 2, the number of
operations required to zero element Ci,j is 6 (r (n + 2 - j) / (h + 1) l - 1) (h+
4) + 6(n - i) + 18, of which two-thirds are multiplications and one-third are
additions. It is not possible to express exactly the total Phase 2 operation
count as a closed form function of m, n, and h. However, when n »
h, the ceiling function may be ignored, and the total operations count is
[3n2 (2h2 + 3h - 5) - 9h3 (n - 2)] /(h + 1).

2. Related Work
A number of studies have solution procedures that circumvent this con­

straint. In particular, Dongarra et al. (1989) alleviate that dependency con­
straint by decoupling the relationship between Uk and Vk. The authors use
the fact that the same orthogonal transformation V that satisfies Eq. (1) can
be used to reduce the symmetric matrix AT A to an n x n tridiagonal matrix
BTB = V T AT AV. Their algorithm computes Vk directly from Vk-l and
the appropriate part of A. Using Vk, selected components of A are updated,
and Uk is determined. After aggregating multiple left and right transforma­
tions, the remainder of A is updated in block fashion. The resulting algo­
rithm requires 4n2 (m - n/3) + hn (5m - n/2 - 3h/2) flops, where h is the

www.manaraa.com

94 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

xxxxx
xxxxx 2

xxxxx
xxxxx

1
~--------------~--------xxxxx

xxxxx
xxxx

3
xxx

xx
x

Figure 7.1. Phase 1 of the PMB algorithm: introduction order of blocks of zeros.

block-size parameter that may be tuned for performance. Lawson and Hanson
(1974) proposed a two-Phase bidiagonalization (LH) algorithm to reduce the
number of operations when m »n. In Phase 1, A is reduced to an n x n
upper triangular matrix R using QR factorization. In Phase 2, the upper tri­
angular matrix is reduced to bidiagonal form using a method similar to the
SHB algorithm. Chan improved on this technique in 1982, proposing that
Givens rotations be used for Phase 2 instead of Householder reflections. The
resulting R-bidiagonalization algorithm requires 2n2 (m + 4n/3) flops - a
savings over the SBH algorithm, when m > (5/3)n. An additional benefit of
using QR factorization in Phase I is that it permits the use of matrix-matrix
multiplication, as in the compact WY algorithm (Schreiber and Van Loan,
1989).

Note that when h = 1, the PMB algorithm reduces A directly to a bidiag­
onal matrix, so Phase 2 is not needed and the resulting algorithm corresponds
to the SBH algorithm. Similarly, when h = n - 1, the intermediate ma­
trix C is an upper triangular and so the resulting algorithm corresponds to
Chan's algorithm. Since the PMB algorithm contains the SBH and Chan's
algorithms as special cases, one can optimize with respect to h to obtain an
algorithm which is guaranteed to perform at least as well as the best of these
two algorithms.

www.manaraa.com

Parallel Matrix Bidiagonalization

XX 1 2 3

XX 4 5 6

XX 7 8 9

XX 11 12 13

XX 14 15 16

XX 17 18 19

X X 20 21

X X 22

XX
X

Figure 7.2. Phase 2 of the PMB algorithm: introduction order of zeros.

95

A closely related problem to matrix bidiagonalization is the reduction of
a symmetric matrix to tridiagonal form. Unfortunately, the dependency con­
straints preventing the aggregation of Householder transformations in the case
of bidiagonalization are also present here. Bischof et al. (1994) circumvent
this problem by first reducing the symmetric matrix to a symmetric banded
form and then reducing the banded matrix to tridiagonal form. This two-Phase
process permits the introduction of matrix-matrix multiplication in Phase 1.

3. Experimental Results
In this section, the execution times of a PMB-based SVD (PMB-SVD) al­

gorithm and the standard for computing the singular values of a matrix, LA­
PACK's DGESVD algorithm, are compared on a SOl Origin 2000. Execution
times for PMB-SVD include the execution time of LAPACK's DBDSQR for
converting bidiagonal matrices to diagonal form. The PMB algorithm em­
ploys the BLAS-3 (Dongarra et aI., 1990) subroutine DGEMM for all of the
matrix-matrix multiplication operations. In addition, this section explores the

www.manaraa.com

96 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

/ ' ."
/ '. /

,,. " .. , .-' :-":-; --0--'
/ ', / , / '-.. I / '-.. I

I I
,, / .-' I /' ,/ I , __
/\, /\. I /, A I /'-..

I I

"/ : './ ,\ / h -- ,
"' I I''. /"'-. 1 / , ,

~ I' ',,' / 1 ,/ ... 1
'<Y / '. I ·" , / , 1 / \ /'0. .. : --------------r--- --,

'v' , / I " './ I
/ "'-. / '1' /" :

' / : , '/ :
/ ' I / , / ' , I L__ _ __ .I

I , ,\ / 1 : / / ""\, :
I I I® ", / I
I /:;"" I
!.------.!

Figure 7.3. Phase 2 of the PMB algorithm: rotation sequence necessary to introduce the
fifth zero.

performance characteristics of the PMB algorithm as function of the block
parameter h and the number of processors P on a HP V2500 as well.

Figures 7.4 compare the execution times of the PMB-SVD and DGESVD
algorithms for various problem dimensions on a single processor as a function
of the parameter h. Since h is a tuning parameter for the PMB algorithm,
it has no effect on the execution times of the DGESVD algorithm. For
4 < h ::; 170, PMB outperforms DGESVD on the SGI by as much 30% in
all cases. This is attributed to the fact that no more than 50% of the opera­
tions in DGESVD are matrix-matrix multiplication (Anderson et al., 1995),
whereas the percentage of matrix-matrix multiplication in the PMB algorithm
approaches 100% as h is increased. Unfortunately, Phase 2 of the PMB al­
gorithm has no matrix multiplication operations. While the primary role of
the parameter h is to control the aggregation of Householder transformations
on the left and the right, the parameter also controls the relative amount of
work performed in Phases 1 and 2. For large h, the matrix multiplication
operations in Phase 1 are more efficient, but the number of elements that

www.manaraa.com

Parallel Matrix Bidiagonalization

160

140

120

100
"...,

~
'I> 80 E
i=

60

40

20

0

[
PMB-SVD: m=n= 2000

- ~ - PMB-SVD: m=n =1000
- DGESVD: m=n = 1500

PMB-SVD: m=n=1500
- DGESVD: m=n =2000
- DGESVD: m=n =1000

-~--111 ...

" _ 11

0 50 100

..... e.·
.. Mo •

150 200

Parameter h

............ ,..

250

97

300

Figure 7.4. Execution times as function of the parameter h on the SGI Origin 2000 for
various problems dimensions.

need to be annihilated in Phase 2 by Givens rotations is also large. For small
h, the matrix multiplication operations in Phase 1 are less efficient, but the
number of elements to be annihilated in Phase 2 is much smaller. Recall that
Phase 2 is composed primarily of Givens rotations, and as was discussed in
Chapter 4, standard Givens rotations are not superscalar efficient. In addition,
the rotations are applied to relatively small vectors of length h + 1 or less,
further contributing to the inefficiency of Phase 2 in comparison to Phase 1.
The resulting performance tradeoff as a function of the parameter h between
the two Phases is evident in Figures 7.5 and 7.4.

Figures 7.6 and 7.7 compare the execution times of the PMB for various
problem dimensions as a function of the parameter P . For each value of the
parameter P and square matrix dimension, h was set to an experimentally
determined optimal value. Not surprisingly, the benefits of increasing P
diminish rapidly. Parallelism in this algorithm is limited to Phase 1. The
execution in Phase 2 is unaffected by the parameter P and begins to dominate
the total execution time as P increases. In addition, as P increases, the size

www.manaraa.com

98 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

-.... - m~n=lOOO 1
L-______ . ______________________ ___

--- m::n=2000 -- m=n=1500

100

90

80

70

60
3:
<) 50 E
i=

40

30

20

10

0 +-----.------.-----..-----------,,---------,.------
0 50 100 150 200 250 300

Parameter h

Figure 7.5. Execution times as function of the parameter h on the HP V2500 for various
problems dimensions.

of the matrix multiplication operations decrease and so does the efficiency of
these operations.

By manipulating the parameters, this chapter has shown that high levels
of performance can be extracted from two machines, and that by distributing
matrix multiplication operations across P processors some additional levels
of performance can be extracted. On a single processor, the PMB algorithm
outperformed LAPACK's DGESVD in all cases. Unfortunately, there are no
vendor-tuned parallel algorithms available for these machines to compare with
the PMB algorithm on multiple processors.

www.manaraa.com

Parallel Matrix Bidiagonalization 99

40 -_._-
--m=1J=2000

35 - ... ~ m=n=1500 i

30 1
-·" -" m=n=IOOO

25 j on
~

" 20 E
~

"j 10 \ ~'It.'~.~ 3i ~. __

:L~ Ir ... • .. ~ .. - ... - .. - 4. ; .. . o_A;."'Olk- .l; ..

0 5 10 15 20 25 30

p

Figure 7.6. Execution times as function of the number of processors P on the HP V2500
for various problem dimensions.

25

14 20
~

15

10

5 -

o
o 5 10 15

P

20 25 30

Figure 7.7. Execution times as function of the number of processors P on the SGJ Origin
2000 for various problem dimensions.

www.manaraa.com

Chapter 8

CONCLUSION

Despite decades of research in industry and academia, parallel algorithm
design largely remains an art form. The systematic steps in the Parallel Al­
gorithm Synthesis Procedure provide algorithm designers with a framework
for mastering this art form. The case studies demonstrate that the synthesis
procedure is a road map for designing reusable building blocks of adaptable,
scalable software components from which high performance signal processing
applications can be constructed. The semi-systematic process for introduc­
ing parameters to control the partitioning and scheduling of computation and
communication allows algorithm designers to simultaneously reap the benefits
of efficiency and portability. The parameters are essentially a convenient rep­
resentation of a large class of algorithms. They allow the algorithm designer
to optimize over a large class of algorithms, enhancing both portability and
efficiency.

While the synthesis methodology encompasses multiple layers of parame­
terization, the varying complexities of the case studies demonstrate that not
all parameterizations are necessary to achieve high levels of performance. In
some cases, tuned kernels can take on the role of a primitive and obviate the
need for certain parameterizations. Tuned kernels make efficient use of the
memory hierarchy, as is the case with the tuned matrix multiplication kernels.
Despite the fact that some parameterizations may not be necessary, it is our
experience that the remaining parameterizations should not be applied out
of order. The underlying ordering of the parameterizations is crucial to the
success of the synthesis procedure. The poor performance of some optimiz­
ing compiler technology is rooted in its failure to first tune for superscalar
performance, then memory hierarchy performance, and finally multiprocessor
performance.

101

www.manaraa.com

102 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Besides the Parallel Algorithm Synthesis Procedure, another important facet
of this work is the presentation of three case studies on parallel matrix fac­
torization. The case studies demonstrate the efficacy of the synthesis pro­
cedure with the development of three parameterized parallel algorithms that
outperform competing algorithms for every scenario examined. In addition
by exploring the performance characteristics of the parameter space, the al­
gorithms shed some light on potential improvements vendors can make to
parallel computer architectures.

The most promising directions for future work lie in the investigation of
more complex algorithms, partial automation of the parameterization proce­
dures in Chapter 3, and the expansion of the procedure to include the para­
meterization of the tradeoff between static data distribution schemes (cyclic
or otherwise), and schemes that attempt to evenly distribute the load among
processors. The latter would prove very useful in helping algorithm designers
exploit the performance tradeoffs between these schemes.

www.manaraa.com

References

Anderson, E., Bai, Z., Bischof, C., Denunel, 1., Dongarra, J., Croz, J., Greenbaum, A., Ham­
marling, S., McKenney, A., Ostrouchov, S., , and Sorensen, D. (1995). LAPACK Users'
Guide, Second Edition. SIAM Publications, Philadelphia, PA, USA.

Andersson, S., Bell, R, Hague, 1., Holthoff, H., Mayes, P., Nakano, J., Shieh, D., and Tuc­
cillo, J. (1998). Rsl6000 scientific and technical computing: Power3 introduction and tuning
guide. RedBooks SG24-5155-00, mM Corporation, International Technical Support Orga­
nization, 11400 Burnet Road, Austin, TX 78758-3493.

Badia, J. M., Quintana, G., and Vidal, A. M. (1994). Efficient parallel qr decomposition on a
network of transputers. In Becker, M., Litzler, L., and Tehel, M., editors, Transputers '94.
Proceedings of the International Conference, pages 247-265, Amsterdam, Netherlands.
lOS Press.

Baker, G., Gunnels, J., Morrow, G., Riviere, B., and van de Geijn, R (1998). Plapack: High
performance through high-level abstraction. In Proceedings of the 1998 International Con­
ference on Parallel Processing, pages 414-422, Lso Alamos, CA IEEE Comput. Soc.

Bell, G. and van Ingen, C. (1999). Dsm perspective: another point of view. Proceedings of the
IEEE,87(3):412--417.

Bischof, C., Lang, B., and Sun, X. (1994). Parallel tridiagonalization through two-step band
reduction. Technical Report ANL-MCS-P412-0194, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, USA

Bischof, C. and Van Loan, C. (1987). The WY representation for products of Householder
matrices. SIAM J. Sci. Comput., 8(1):s2-s13.

Blackford, L. S., Choi, 1., Cleary, A, D' Azevedo, E., Denunel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C. (1997).
ScaLAPACK user's guide. SIAM Publications, Philadelphia, PA, USA.

Bodin, F. and O'Boyle, M. (1996). A compiler strategy for shared virtual memories. In Szy­
manski, B. K. and Sinharoy, B., editors, Proceedings 3rd Workshop on Languages, Com­
pilers, and Run-time Systems for Scalable Computers, pages 57-69, Norwell, MA. Kluwer
Academic Publishers.

Bova, S. W, Breshears, C. P., Cuicchi, C., Demirbilek, Z., and Gabb, H. (1999). Nesting
openmp in an mpi application. In Olariu, S. and Wu, J., editors, Proceedings of the ISCA
12th International Conference on Parallel and Distributed Computing Systems, pages 566-
571, Cary, NC, USA. ISCA

Carrig,1. 1. and Meyer, G. G. L. (1997). Efficient householder qr factorization for superscalar
processors. ACM Trans. Math. Software, 23(3):362-378.

103

www.manaraa.com

104 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Carrig, J. J. and Meyer, G. G. L. (\999). A parameterized ordering for cache-, register- and
pipeline-efficient givens qr decomposition. Advances in Compo Math., 10:97-\13.

Chamberlain, R. M. and Powell, M. J. D. (1988). Qr factorization for linear least squares
problems on the hypercube. IMA Journal of Numerical Analysis, 8(4):401-413.

Choi, J., Dongarra, J. J., and Walker, D. W. (1995). The design of a parallel dense linear
algebra software library: Reduction to Hessenberg, tridiagonal, and bidiagonal form. Numer.
Algorithms, 10:379-399.

Chu, E. and George, A. (1989). Qr factorization of a dense matrix on a shared-memory
multiprocessor. Parallel Computing, 11(1):55-71.

Cosnard, M., Daoudi, M., Muller, J. M., and Robert, Y. (1986). On parallel and systolic
givens factorizations of dense matrices. In et aI., M. C., editor, Parallel Algorithms and
Architectures, pages 245-258, Amsterdam, Netherlands, North Holland. Elsevier Science
Pub. Co.

Dagnum, L. and Menon, R. (1998). Openmp: an industry standard api for shared-memory
programming. IEEE Computational Science and Engineering, 5(1):46--55.

Darte, A. and Vivien, F. (1997). Optimal fine and medium grain parallelism detection in
polyhedral reduced dependence graphs. International Journal of Parallel Programming,
25(6):447-496.

Demmel, J. and Kahan, W. (1990). Accurate singular values of bidiagonal matrices. SIAM J.
Sci. Sta. Comput., 11(5):873-912.

Desprez, F., Dongarra, J., Rastello, F., and Robert, Y. (1998). Determining the idle time of a
tiling: new results. J. Inform. Sci. Engrg., 14(1):167-190.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. (1990). A set oflevel 3 basic linear
algebra subprograms. ACM Trans. Math. Software, 16(1):1-17.

Dongarra, J. J., Sameh, A. H., and Sorensen, D. C. (1986). Implementation of some concurrent
algorithms for matrix factorization. Parallel Computing, 3:25-34.

Dongarra, J. 1., Sorensen, D. C., and Hammarling, S. J. (1989). Block reduction of matrices
to condensed forms for eigenvalue computations. J. Comput. Appl. Math., 27:215-227.

Dunn, I. N. and Meyer, G. G. L. (2002). Qr factorization for shared memory and message
passing. Parallel Computing, 28:1507-1530.

Gallivan, K., Jalby, W., Meier, U., and Sameh, A. H. (1988). Impact of hierarchical memory
systems on linear algebra algorithm design. Internat. J. Supercomputer Appl., 2(I): 12-48.

Golub, G. and Kahan, W. (1965). Calculating the singular values and pseudo-inverse of a
matrix. SIAM J. Numer. Anal. Ser. B2, pages 205-224.

Golub, G. H. and Van Loan, C. F. (1989). Matrix Computations. The Johns Hopkins University
Press, Baltimore, MD, USA, second edition.

Jainandunsing, K. and Deprettere, E. F. (1989). A new class of parallel algorithms for solving
systems of linear equations. SIAM J. Sci. Stat. Comput., 10(5):880--912.

Judge, A., Nixon, P., Tangney, B., Weber, S., and Gahill, V. (1999). Distributed shared memory.
In Buyya, R., editor, High performance cluster computing: Architectures and systems,
volume 1, pages 409-438. Prentice Hall PTR, Upper Saddle River, NJ, USA.

Larriba-Pey, J. L., Valero-Garcia, M., and Navarro, J. J. (1992). Parallel qr decomposition on
the suprenum multiprocessor. In Valero, M., Onate, E., Jane, M., Larriba, J. L., and Suarez,
8., editors, Parallel Computing and Transputer Applications, pages 167-176, Barcleona,
Spain. CIMNE.

Lawson, C. L., Hanson, R., and Kincaid, D. (1979). Basic linear algebra subprograms for
fortran usage. ACM Trans. Math. Software, 5(3):308-323.

Lim, A. W. and Lam, M. S. (1998). Maximizing parallelism and minimizing synchronization
with affine transforms. Parallel Computing, 24(3-4).

www.manaraa.com

REFERENCES 105

Lord, R. E., Kowalik, 1. S., and Kumar, S. P. (1983). Solving linear algebraic equations on an
mimd computer. J. ACM, 30(1):103-117.

Louka, B. and Tchuente, M. (1988). Givens elimination on systolic arrays. In Proceedings of
the 1988 International Conference on Supercomputing, pages 638-647, New York, NY.
ACM.

Lucka, M., Vajtersic, M., and Viktorinova, E. (1996). Massively parallel poisson and qr fac­
torization solvers. Computers and Mathematics with Applications, 31(4-5): 19--26.

Maslennikow, 0., Kaniewski, J., and Wyrzykowski, R. (1998). Fault-tolerant qr-decomposition
algorithm and its parallel implementation. In Pritchard, D. and Reeve, J., editors, Pro­
ceedings oj the 4th International Euro-Par ConJerence, pages 798-803, Berlin, Germany.
Springer-Verlag.

Message Passing Interface Forum (1997). Mpi: A message passing interface standard. Technical
report, Univ. of Tennessee, Knoxville, TN.

Meyer, G. G. L. and Pascale, M. (1995). A family of parallel qr factorization algorithms.
Concurrency. Practice and Experience, 8(6):461.

Modi, J. J. and Clarke, R. M. B. (1984). An alternate givens ordering. Numer. Math., 43(1):83-
90.

OpenMP Architecture Review Board (1999). Openmp fortran application program interface.
Technical report.

Park, N., Prasanna, V. K., and Raghavendra, C. S. (1999). Efficient algorithms for block­
cyclic array redistribution between processor sets. IEEE Trans. on Parallel and Distributed
Computing, 10(12):1217-1240.

Petit, A. P. and Dongarra, J. 1. (1999). Algorithm redistribution methods for block-cyclic
decompositions. IEEE Trans. on Parallel and Distributed Systems, 10(12):1201-1216.

Porta, T. (1988). Using givens rotations to solve dense linear systems on the hypercube. In
Kartashev, L. P. and Kartashev, S. I., editors, Proceedings oj the Third International Confer­
ence on Supercomputing, volume 2, pages 443-447, St. Petersburgh, FL, USA. International
Supercomputing Institute.

Pothen, A. and Raghavan, R. (1989). Distributed orthogonal factorizations: Givens and house­
holder algorithms. SIAM J. Sci. Stat. Comput., 10(6): 1113-1114.

Protic, J., Tomasevic, M., and Milutinovic, V. (1996). Distributed shared memory: concepts
and systems. IEEE Parallel Distrib. Technol., Syst. Appl., 4(2):63-71.

Sahni, S. and Thanvantri, V. (1996). Performance metrics: Keeping the focus on runtime. IEEE
Parallel Distrib. Technol., Syst. Appl., 4(I):43-56.

Sameh, A. and Kuck, D. (1978). On stable parallel linear system solvers. J. ACM, 25(1):81-91.
Sarkar, V. (1997). Automatic selection of high-order transformations in the ibm xl fortran

compilers. IBM J. Res. Develop., 41(3):233-264.
Schreiber, R. and Van Loan, C. (1989). A storage-efficient WY representation for products of

Householder transformations. SIAM J. Sci. Stat. Comput., 10(1):53-57.
Smith, A. and Suri, S. (2000). Rectangular tiling in multidimensional arrays. Journal oj Algo­

rithms, 37(2):451-467.
Sun, X.-H. and Gustafson, 1. L. (1991). Toward a better parallel performance metric. Parallel

Computing, 17:1093-1109.
Throop, J. (1999). Openmp: shared-memory parallelism from the ashes. Computer, 32(5):108-

109.
Wilburn, V. C., Hak-Lim, K., and Alexander, W. E. (1996). An algorithm and architecture

for the parallel solution of systems of linear equations. In Proceedings oJthe 1996 IEEE
Fifteenth Annual International Phoenix ConJerence on Computers and Communications,
pages 392-398, New York, NY. IEEE.

Wilson, G. V. (1993). The history of the development parallel computing.

www.manaraa.com

106 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

Wilson, R. P., French, R. S., Wilson, C. S., Amarasinghe, S. P., Anderson, 1. M., Tjiang, S.
W. K., Shih-Wei, L., Chau-Wen, T., Hall, M. W., Lam, M. S., and Hennessy, J. L. (1994).
Suif: an infrastructure for research on parallelizing and optimizing compilers. SIGPLAN
Notices, 29(12):31-37.

Wolf, M. E. and Lam, M. S. (1991). A loop transformation theory and algorithm to maximize
parallelism. IEEE 1Tans. on Parallel and Distributed Systems, 2(4):452-471.

Wolfe, M. (1996a). Parallelizing compilers. ACM Computing Surveys, 28(1):261-262.
Wolfe, M. J. (1996b). High peiformance compilers for parallel computing. Addison-Wesley

Publishing Company, Redwood City, CA, USA.
Wright, K. (1991). Parallel algorithms for qr decomposition on a shared memory multiproces­

sor. Parallel Computing, 17(6-7):779-790.

www.manaraa.com

Index

Algorithm, 2
Asynchronous parameterized parallel fast

Givens, 57
Compact WY, 38
Compact WY QR factorization, 3
Example algorithm, 3
Fast Givens QR factorization, 3
Hybrid parameterized parallel fast Givens,

59
Load balancing, 49, SO, 79
Matrix bidiagonalization, 3
Modified Gram-Schmidt, 18
Parallel matrix bidiagonalization, 91, 92
Parameterized parallel compact WY, 82
Parameterized parallel fast Givens, 42, 50
Standard Compact WY QR factorization,

40
Standard fast Givens QR factorization,

33,35
Standard Givens QR factorization, 32
Standard Householder bidiagonal factor­

ization,40
Standard Householder QR factorization,

37
Synchronous parameterized parallel fast

Givens, 52
Task partitioning, 79

AP,56
ARC,81
Arithmetic complexity, 11, 49
ASC, 82
ASYNC, 57, 60, 61
Asynchronous message passing procedure, 56
Asynchronous parameterized parallel fast Givens

algorithm, 57
Asynchronous receive/send communication pro­

cedure,81
Asynchronous send communication procedure,

82

107

Basic primitive, IS, 16
Block QR factorization, 38

Cache, 7, 14
Compact WY, 38
Compact WY algorithm, 38
Compact WY QR factorization algorithm, 3
Concurrency set, 24, 47, 48

Sink,17
Source, 17

CWY, 38

Distributed memory model, 9, 10
Distributed shared memory, 7

Efficiency, 12
Execution time, 12

Fast Givens QR factorization algorithm, 3
Fat tree, 8

Givens rotation, 89
Givens-based QR factorization, 3, 31, 59

HMP, 58
Householder bidiagonal factorization, 40
Householder-based QR factorization, 3, 36, 59
H~ 8,14,42,60-62,66-69,84,85,89

MLIB,61
HPFG,59
Hybrid message passing procedure, 58
Hybrid parameterized parallel fast Givens algo­

rithm,59
Hybrid shared memory/message passing, 10,41,

42,57,58,60,65,67
Hypercube, 8

IBM, 8-10, 14,42,60,67,68,70
Interconnection network, 15

www.manaraa.com

108 PARALLEL ALGORITHM SYNTHESIS PROCEDURE

LAPACK, 89, 90, 95
DBDSQR,9S
DGEQRF, 61, 64, 83, 84
DGESVD, 95, 96, 98

Latency, 11
LB,79
Leading task, 78
Least-recently-used replacement policy, IS
LH,94
Linear array, IS
Load balancing algorithm, 49, SO, 79
Load imbalance, 24

Matrix bidiagonalization algorithm, 3
Memory hierarchy, 10, 13, 14

Cache, 7, 14
Register file, 14
Value-based reuse, 19

Memory hierarchy parameterization procedure,
23, 44

Memory hierarchy reuse, 13, 2 I, 48
Temporal, 22
Value-based, 19

Mesh,8
Message Passing Interface (MPI), 10
Modified Gram-Schmidt algorithm, 18
MPI,IO

Network interface controller, 14, 15

OpenMP,IO
Ordering constraints, 17

Parallel algorithm synthesis procedure, 3
Parallel matrix bidiagonalization algorithm, 9 I,

92
Parameterized parallel compact WY algorithm,

82
Parameterized parallel fast Givens algorithm,

42,50
PCWY, 82-85, 87
PFG, 42, 52, 60-62
PMB, 90, 91, 93-98
Procedure, 2

Asynchronous message passing, 56
Asynchronous receive/send communica-

tion,81
Asynchronous send communication, 82
Example procedure, 3
Hybrid message passing, 58
Memory hierarchy parameterization, 23,

44
Sink concurrency set definition, 17
Source concurrency set definition, 17
Superscalar parameterization, 19, 20, 22,

42
Synchronous message passing, 51

Programming model
Distributed memory, 9, 10

Hybrid shared memory/message passing,
10,41,42,57,58,60,65,67

Shared memory, 9, 10

Register file, 14
Row range, 5 I

SBH,94
ScaLAPACK PDGEQRF, 41, 61, 64, 83, 84
Scalar unit, 14, IS
SCWY,40
SFG, 33, 35
SG,32
SGI, 8-10, 14, 42, 60-62, 67-69, 84, 85, 87,

90,96
SGIMATH,61

SH, 37, 40
Shared memory model, 9, 10,67
SHB, 40, 90, 94
Sink concurrency set, 17
Sink concurrency set definition procedure, 17
Source concurrency set, 17
Source concurrency set definition procedure, 17
SP,51
Speedup, 12
Standard Compact WY QR factorization algo­

rithm,40
Standard fast Givens QR factorization algo-

rithm, 33, 35
Standard Givens QR factorization, 31
Standard Givens QR factorization algorithm, 32
Standard Householder bidiagonal factorization

algorithm, 40
Standard Householder QR factorization algo­

rithm,37
Subordinate task, 78
Superscalar parameterization procedure, 19, 20,

22,42
Superscalar processor, 7, 14--16
SYNC, 52, 60, 61
Synchronization index, 47
Synchronous message passing procedure, 51
Synchronous parameterized parallel fast Givens

algorithm, 52

Task,48
Leading, 78
Subordinate, 78

Task definition, 47
Task index, 47
Task partitioning algorithm, 79
Temporal reuse, 22
Throughput, II
Torus, 8
TP,79

Value-based data dependency, 17
Value-based reuse, 19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

